Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import torch | |
| import os | |
| import json | |
| from tqdm import tqdm | |
| import shortuuid | |
| from llava.constants import ( | |
| IMAGE_TOKEN_INDEX, | |
| DEFAULT_IMAGE_TOKEN, | |
| DEFAULT_IM_START_TOKEN, | |
| DEFAULT_IM_END_TOKEN, | |
| ) | |
| from llava.conversation import conv_templates, SeparatorStyle | |
| from llava.model.builder import load_pretrained_model | |
| from llava.utils import disable_torch_init | |
| from llava.mm_utils import ( | |
| tokenizer_image_token, | |
| process_images, | |
| get_model_name_from_path, | |
| ) | |
| from torch.utils.data import Dataset, DataLoader | |
| from PIL import Image | |
| import math | |
| def split_list(lst, n): | |
| """Split a list into n (roughly) equal-sized chunks""" | |
| chunk_size = math.ceil(len(lst) / n) # integer division | |
| return [lst[i : i + chunk_size] for i in range(0, len(lst), chunk_size)] | |
| def get_chunk(lst, n, k): | |
| chunks = split_list(lst, n) | |
| return chunks[k] | |
| # Custom dataset class | |
| class CustomDataset(Dataset): | |
| def __init__( | |
| self, | |
| questions, | |
| image_folder, | |
| tokenizer, | |
| image_processor, | |
| model_config, | |
| model_name, | |
| ): | |
| self.questions = questions | |
| self.image_folder = image_folder | |
| self.tokenizer = tokenizer | |
| self.image_processor = image_processor | |
| self.model_config = model_config | |
| self.model_name = model_name | |
| def __getitem__(self, index): | |
| line = self.questions[index] | |
| image_file = line["image"] | |
| if 'question' in line: | |
| qs = line['question'] | |
| else: | |
| qs = line["text"] | |
| if self.model_config.mm_use_im_start_end: | |
| qs = ( | |
| DEFAULT_IM_START_TOKEN | |
| + DEFAULT_IMAGE_TOKEN | |
| + DEFAULT_IM_END_TOKEN | |
| + "\n" | |
| + qs | |
| ) | |
| else: | |
| if "multiimg-template" in self.model_name: | |
| qs = "<img_0>" + DEFAULT_IMAGE_TOKEN + "\n" + qs | |
| else: | |
| qs = DEFAULT_IMAGE_TOKEN + "\n" + qs | |
| conv = conv_templates[args.conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| image = Image.open(os.path.join(self.image_folder, image_file)).convert("RGB") | |
| if isinstance(self.image_processor, list): | |
| image_tensor_0 = process_images( | |
| [image], self.image_processor[0], self.model_config | |
| )[0] | |
| image_tensor_1 = process_images( | |
| [image], self.image_processor[1], self.model_config | |
| )[0] | |
| image_tensor = torch.cat((image_tensor_0, image_tensor_1), dim=0) | |
| else: | |
| image_tensor = process_images( | |
| [image], self.image_processor, self.model_config | |
| )[0] | |
| input_ids = tokenizer_image_token( | |
| prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt" | |
| ) | |
| return input_ids, image_tensor | |
| def __len__(self): | |
| return len(self.questions) | |
| # DataLoader | |
| def create_data_loader( | |
| questions, | |
| image_folder, | |
| tokenizer, | |
| image_processor, | |
| model_config, | |
| model_name, | |
| batch_size=1, | |
| num_workers=4, | |
| ): | |
| assert batch_size == 1, "batch_size must be 1" | |
| dataset = CustomDataset( | |
| questions, image_folder, tokenizer, image_processor, model_config, model_name | |
| ) | |
| data_loader = DataLoader( | |
| dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False | |
| ) | |
| return data_loader | |
| def eval_model(args): | |
| # Model | |
| disable_torch_init() | |
| model_path = os.path.expanduser(args.model_path) | |
| model_name = get_model_name_from_path(model_path) | |
| tokenizer, model, image_processor, context_len = load_pretrained_model( | |
| model_path, args.model_base, model_name | |
| ) | |
| questions = [ | |
| json.loads(q) for q in open(os.path.expanduser(args.question_file), "r") | |
| ] | |
| questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
| answers_file = os.path.expanduser(args.answers_file) | |
| os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
| ans_file = open(answers_file, "w") | |
| if ( | |
| "plain" in model_name | |
| and "finetune" not in model_name.lower() | |
| and "mmtag" not in args.conv_mode | |
| ): | |
| args.conv_mode = args.conv_mode + "_mmtag" | |
| print( | |
| f"It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}." | |
| ) | |
| data_loader = create_data_loader( | |
| questions, | |
| args.image_folder, | |
| tokenizer, | |
| image_processor, | |
| model.config, | |
| model_name, | |
| ) | |
| for (input_ids, image_tensor), line in tqdm( | |
| zip(data_loader, questions), total=len(questions) | |
| ): | |
| idx = line["question_id"] | |
| cur_prompt = line["text"] | |
| stop_str = ( | |
| conv_templates[args.conv_mode].sep | |
| if conv_templates[args.conv_mode].sep_style != SeparatorStyle.TWO | |
| else conv_templates[args.conv_mode].sep2 | |
| ) | |
| input_ids = input_ids.to(device="cuda", non_blocking=True) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=image_tensor.to( | |
| dtype=torch.bfloat16, device="cuda", non_blocking=True | |
| ), | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| top_p=args.top_p, | |
| num_beams=args.num_beams, | |
| max_new_tokens=128, | |
| use_cache=True, | |
| ) | |
| input_token_len = input_ids.shape[1] | |
| n_diff_input_output = ( | |
| (input_ids != output_ids[:, :input_token_len]).sum().item() | |
| ) | |
| if n_diff_input_output > 0: | |
| print( | |
| f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids" | |
| ) | |
| outputs = tokenizer.batch_decode( | |
| output_ids[:, input_token_len:], skip_special_tokens=True | |
| )[0] | |
| outputs = outputs.strip() | |
| if outputs.endswith(stop_str): | |
| outputs = outputs[: -len(stop_str)] | |
| outputs = outputs.strip() | |
| ans_id = shortuuid.uuid() | |
| ans_file.write( | |
| json.dumps( | |
| { | |
| "question_id": idx, | |
| "prompt": cur_prompt, | |
| "text": outputs, | |
| "answer_id": ans_id, | |
| "model_id": model_name, | |
| "metadata": {}, | |
| } | |
| ) | |
| + "\n" | |
| ) | |
| # ans_file.flush() | |
| ans_file.close() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--image-folder", type=str, default="") | |
| parser.add_argument("--question-file", type=str, default="tables/question.jsonl") | |
| parser.add_argument("--answers-file", type=str, default="answer.jsonl") | |
| parser.add_argument("--conv-mode", type=str, default="llava_v1") | |
| parser.add_argument("--num-chunks", type=int, default=1) | |
| parser.add_argument("--chunk-idx", type=int, default=0) | |
| parser.add_argument("--temperature", type=float, default=0.2) | |
| parser.add_argument("--top_p", type=float, default=None) | |
| parser.add_argument("--num_beams", type=int, default=1) | |
| parser.add_argument("--regen", action="store_true", default=False) | |
| args = parser.parse_args() | |
| if os.path.exists(args.answers_file) and not args.regen: | |
| print("{} already exists, won't regen again.".format(args.answers_file)) | |
| else: | |
| eval_model(args) | |