""" Visual-CoT: Chain-of-Thought Reasoning Demo on Hugging Face Spaces Showcasing Visual Chain-of-Thought with Interactive Benchmark Examples Paper: Visual CoT: Advancing Multi-Modal Language Models with a Comprehensive Dataset and Benchmark for Chain-of-Thought Reasoning https://arxiv.org/abs/2403.16999 """ import os import torch import gradio as gr from PIL import Image, ImageDraw, ImageFont import re import json import spaces from pathlib import Path import requests from io import BytesIO from huggingface_hub import login from llava.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, ) from llava.conversation import conv_templates from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import ( process_images, tokenizer_image_token, get_model_name_from_path, ) # No need for local benchmark loader - using HF datasets directly # ============================================================================= # Authentication # ============================================================================= # Login to Hugging Face using token from Spaces secrets HF_TOKEN = os.environ.get("HF_TOKEN", None) if HF_TOKEN: try: login(token=HF_TOKEN, add_to_git_credential=False) print("āœ“ Successfully logged in to Hugging Face") except Exception as e: print(f"⚠ Warning: Failed to login to Hugging Face: {e}") print(" Continuing without authentication...") else: print("ℹ No HF_TOKEN found, continuing without authentication") # ============================================================================= # Configuration # ============================================================================= # Available models AVAILABLE_MODELS = { "VisCoT-7B-224 (Fastest)": "deepcs233/VisCoT-7b-224", "VisCoT-7B-336 (Balanced)": "deepcs233/VisCoT-7b-336", "VisCoT-13B-224 (Better)": "deepcs233/VisCoT-13b-224", "VisCoT-13B-336 (Best)": "deepcs233/VisCoT-13b-336", } MODEL_PATH = "deepcs233/VisCoT-13b-336" # Default: best quality CURRENT_MODEL_NAME = "VisCoT-13B-336 (Best)" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Benchmark datasets from Visual Chain-of-Thought Reasoning Benchmarks Collection # https://huggingface.co/collections/tuandunghcmut/visual-chain-of-thought-reasoning-benchmarks BENCHMARK_DATASETS = { "Visual-CoT": { "path": "deepcs233/Visual-CoT", "config": None, "split": "train", "description": "Main Visual-CoT dataset with 438K question-answer pairs", }, "GQA": { "path": "lmms-lab/GQA", "config": "train_balanced_images", "split": "train", "description": "Scene graph question answering (balanced training set)", }, "RefCOCO": { "path": "lmms-lab/RefCOCO", "config": None, "split": "train", "description": "Referring expression comprehension (17.6K examples)", }, "RefCOCO+": { "path": "lmms-lab/RefCOCOplus", "config": None, "split": "train", "description": "RefCOCO with no location words (7.58K examples)", }, "RefCOCOg": { "path": "lmms-lab/RefCOCOg", "config": None, "split": "train", "description": "RefCOCO with longer expressions (12.6K examples)", }, "POPE": { "path": "lmms-lab/POPE", "config": None, "split": "test", "description": "Polling-based Object Probing Evaluation (18K test examples)", }, "ScienceQA": { "path": "lmms-lab/ScienceQA", "config": None, "split": "train", "description": "Science question answering (12.6K examples)", }, "MM-GCoT": { "path": "AQUA6/MM-GCoT", "config": None, "split": "train", "description": "Multi-Modal Graph Chain-of-Thought (64.9K examples)", }, "VGR": { "path": "BytedanceDouyinContent/VGR", "config": None, "split": "train", "description": "Visual Grounding & Reasoning (90K examples)", }, } print(f"āœ… Configured {len(BENCHMARK_DATASETS)} benchmark datasets from HF collection") # ============================================================================= # Model Loading (Global - bfloat16) # ============================================================================= print("šŸ”„ Loading Visual-CoT model in bfloat16...") disable_torch_init() model_name = get_model_name_from_path(MODEL_PATH) # Load model globally with bfloat16 precision tokenizer, model, image_processor, context_len = load_pretrained_model( MODEL_PATH, None, model_name, load_8bit=False, load_4bit=False, device=DEVICE, ) # Ensure model is in bfloat16 if DEVICE == "cuda": model = model.to(dtype=torch.bfloat16) print(f"āœ“ Model loaded in bfloat16 on {DEVICE}") else: print(f"āœ“ Model loaded on {DEVICE} (CPU mode)") print(f"āœ“ Model: {model_name}") print(f"āœ“ Context length: {context_len}") print(f"āœ“ Device: {DEVICE}") # ============================================================================= # Model Management Functions # ============================================================================= def switch_model(model_choice): """Switch to a different model""" global tokenizer, model, image_processor, context_len, MODEL_PATH, CURRENT_MODEL_NAME try: new_model_path = AVAILABLE_MODELS[model_choice] if new_model_path == MODEL_PATH: return f"Already using {model_choice}" print(f"\nšŸ”„ Switching to {model_choice}...") disable_torch_init() model_name = get_model_name_from_path(new_model_path) # Load new model tokenizer, model, image_processor, context_len = load_pretrained_model( new_model_path, None, model_name, load_8bit=False, load_4bit=False, device=DEVICE, ) # Ensure bfloat16 if DEVICE == "cuda": model = model.to(dtype=torch.bfloat16) MODEL_PATH = new_model_path CURRENT_MODEL_NAME = model_choice print(f"āœ“ Switched to {model_choice}") return f"āœ“ Successfully switched to {model_choice}\nModel: {model_name}\nDevice: {DEVICE}" except Exception as e: import traceback error_msg = f"āŒ Failed to switch model: {str(e)}\n{traceback.format_exc()}" print(error_msg) return error_msg # ============================================================================= # Benchmark Loading Functions # ============================================================================= def load_benchmark_example(dataset_name, index=0): """Load an example from HF benchmark dataset""" try: from datasets import load_dataset dataset_info = BENCHMARK_DATASETS.get(dataset_name) if not dataset_info: return None, "Dataset not found", "", "", "" dataset_path = dataset_info["path"] dataset_config = dataset_info.get("config") dataset_split = dataset_info.get("split", "train") # Load dataset with config and split print(f"Loading {dataset_name} from {dataset_path} (config={dataset_config}, split={dataset_split})...") if dataset_config: dataset = load_dataset(dataset_path, dataset_config, split=dataset_split, streaming=True) else: dataset = load_dataset(dataset_path, split=dataset_split, streaming=True) # Get specific index (for streaming, we need to iterate) for i, example in enumerate(dataset): if i == index: # Extract fields (structure varies by dataset) image = example.get("image") question = example.get("question", example.get("text", "")) # Try to get bounding box in various formats bbox = example.get("bbox", example.get("bboxes", "")) if isinstance(bbox, list) and bbox: bbox_str = str(bbox) else: bbox_str = "No bounding box available" answer = example.get("answer", example.get("label", "")) status = f"šŸ“Š Dataset: {dataset_name} | Example {index + 1}\n{dataset_info['description']}" return image, question, bbox_str, answer, status # Stop after a few iterations for efficiency if i > index + 10: break return None, "Index out of range", "", "", "Could not find example at this index" except Exception as e: error_msg = f"Error loading {dataset_name}: {str(e)}" print(error_msg) import traceback traceback.print_exc() return None, error_msg, "", "", error_msg # ============================================================================= # Utility Functions # ============================================================================= def parse_bbox(text): """Parse bounding box from model output""" pattern1 = r"###\[([\d\.]+),\s*([\d\.]+),\s*([\d\.]+),\s*([\d\.]+)\]" pattern2 = r"\[([\d\.]+),\s*([\d\.]+),\s*([\d\.]+),\s*([\d\.]+)\]" matches = re.findall(pattern1, text) if not matches: matches = re.findall(pattern2, text) if matches: bbox = [float(x) for x in matches[-1]] if all(0 <= x <= 1 for x in bbox): return bbox return None def draw_bounding_box(image, bbox, color="red", width=5): """Draw bounding box on image""" if bbox is None: return image img = image.copy() draw = ImageDraw.Draw(img) img_width, img_height = img.size # Convert normalized to pixel coordinates x1 = int(bbox[0] * img_width) y1 = int(bbox[1] * img_height) x2 = int(bbox[2] * img_width) y2 = int(bbox[3] * img_height) # Draw rectangle draw.rectangle([x1, y1, x2, y2], outline=color, width=width) # Draw label label = f"ROI: [{bbox[0]:.3f}, {bbox[1]:.3f}, {bbox[2]:.3f}, {bbox[3]:.3f}]" try: font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 14) except: font = ImageFont.load_default() # Text background bbox_text = draw.textbbox((x1, y1 - 22), label, font=font) draw.rectangle([bbox_text[0]-2, bbox_text[1]-2, bbox_text[2]+2, bbox_text[3]+2], fill=color) draw.text((x1, y1 - 22), label, fill="white", font=font) return img def load_benchmark_examples(dataset_name, num_examples=5): """ Load examples from benchmark dataset Returns list of (image_path, question, ground_truth_bbox, ground_truth_answer) """ benchmark_file = f"viscot_benchmark/benchmark/{dataset_name}.json" if not os.path.exists(benchmark_file): return [] try: with open(benchmark_file, 'r') as f: data = json.load(f) examples = [] for item in data[:num_examples]: # Extract information based on dataset structure image_file = item.get('image', '') question = item['conversations'][0]['value'].replace('\n', '').split('Please provide')[0].strip() gt_bbox_str = item['conversations'][1]['value'] if len(item['conversations']) > 1 else None gt_answer = item['conversations'][3]['value'] if len(item['conversations']) > 3 else None examples.append({ 'image': image_file, 'question': question, 'gt_bbox': gt_bbox_str, 'gt_answer': gt_answer, 'dataset': dataset_name }) return examples except Exception as e: print(f"Error loading {dataset_name}: {e}") return [] # ============================================================================= # Main Inference Function (with @spaces.GPU decorator) # ============================================================================= @spaces.GPU(duration=120) # Zero GPU allocation for 120 seconds def generate_viscot_response(image, question, temperature=0.2, max_tokens=512): """ Generate Visual-CoT response with bounding box detection Args: image: PIL Image question: str temperature: float max_tokens: int Returns: tuple: (bbox_response, final_answer, image_with_bbox, processing_info) """ if image is None: return "āŒ Please upload an image!", "", None, "" if not question.strip(): return "āŒ Please enter a question!", "", None, "" try: # Model is already loaded globally - use it directly # Initialize conversation conv_mode = "llava_v1" conv = conv_templates[conv_mode].copy() # ===================================================================== # STEP 1: Detect Region of Interest (ROI) # ===================================================================== prompt_step1 = ( f"{DEFAULT_IMAGE_TOKEN}\n{question} " f"Please provide the bounding box coordinate of the region this question asks about." ) conv.append_message(conv.roles[0], prompt_step1) conv.append_message(conv.roles[1], None) prompt1 = conv.get_prompt() # Process image image_tensor = process_images([image], image_processor, model.config) if isinstance(image_tensor, list): image_tensor = [img.to(DEVICE, dtype=torch.bfloat16) for img in image_tensor] else: image_tensor = image_tensor.to(DEVICE, dtype=torch.bfloat16) # Tokenize input_ids = tokenizer_image_token( prompt1, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt" ).unsqueeze(0).to(DEVICE) # Generate bbox with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=temperature > 0.001, temperature=max(temperature, 0.01), max_new_tokens=128, use_cache=True, ) bbox_response = tokenizer.decode( output_ids[0, input_ids.shape[1]:], skip_special_tokens=True ).strip() # Parse bbox bbox = parse_bbox(bbox_response) # ===================================================================== # STEP 2: Answer Question with ROI Context # ===================================================================== conv.messages[-1][-1] = bbox_response second_question = ( f"Please answer the question based on the original image and local detail image. {question}" ) conv.append_message(conv.roles[0], second_question) conv.append_message(conv.roles[1], None) prompt2 = conv.get_prompt() input_ids = tokenizer_image_token( prompt2, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt" ).unsqueeze(0).to(DEVICE) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=temperature > 0.001, temperature=max(temperature, 0.01), max_new_tokens=max_tokens, use_cache=True, ) final_answer = tokenizer.decode( output_ids[0, input_ids.shape[1]:], skip_special_tokens=True ).strip() # Visualization image_with_bbox = draw_bounding_box(image, bbox) if bbox else image # Processing info processing_info = f"āœ“ Processed successfully | Bbox: {bbox if bbox else 'Not detected'}" return bbox_response, final_answer, image_with_bbox, processing_info except Exception as e: import traceback error_msg = f"āŒ Error: {str(e)}\n{traceback.format_exc()}" return error_msg, "", None, error_msg # ============================================================================= # Gradio Interface # ============================================================================= def create_demo(): """Create Gradio interface""" # Custom CSS for beautiful UI custom_css = """ .gradio-container { font-family: 'Inter', sans-serif; } .header { text-align: center; padding: 20px; background: linear-gradient(135deg, #1e3a8a 0%, #1e40af 100%); color: white; border-radius: 10px; margin-bottom: 20px; } .info-box { background: #f0f7ff; border-left: 4px solid #3b82f6; padding: 15px; border-radius: 5px; margin: 10px 0; } .example-box { border: 2px solid #e5e7eb; border-radius: 8px; padding: 10px; margin: 5px 0; } .metric-card { background: white; border-radius: 8px; padding: 15px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); margin: 10px 0; } """ with gr.Blocks( theme=gr.themes.Soft( primary_hue="blue", secondary_hue="indigo", neutral_hue="slate", ), css=custom_css, title="Visual-CoT Demo" ) as demo: # Header gr.HTML("""

šŸŒ‹ Visual-CoT: Chain-of-Thought Reasoning

Advancing Multi-Modal Language Models with Visual Chain-of-Thought

šŸ“„ Paper (NeurIPS 2024 Spotlight) | šŸ’» GitHub | šŸ¤— Dataset

""") # Introduction gr.Markdown(""" ## 1. Introduction to Visual-CoT **Visual Chain-of-Thought (VisCoT)** is a multi-modal language model that enables: 1. **Region Identification**: Detect key regions in images using bounding boxes 2. **Step-by-Step Reasoning**: Apply Chain-of-Thought methodology for visual understanding 3. **Question Answering**: Provide interpretable explanations for visual content ### 1.1 Dataset Statistics - 438,000 question-answer pairs with bounding box annotations - 13 diverse benchmarks (DocVQA, GQA, TextVQA, etc.) - Based on LLaVA-1.5 architecture with CLIP ViT-L/14 vision encoder """) # Authentication notice for Zero GPU gr.HTML("""

Note: This Space uses Zero GPU which requires authentication. Please login or create a free account if you encounter quota errors.

""") # Model Selector with gr.Row(): with gr.Column(scale=2): gr.Markdown("### Model Selection") model_dropdown = gr.Dropdown( choices=list(AVAILABLE_MODELS.keys()), value=CURRENT_MODEL_NAME, label="Select Model", info="Choose model variant (larger = better quality, slower)" ) with gr.Column(scale=1): gr.Markdown("### Current Model Status") model_status = gr.Textbox( value=f"Active: {CURRENT_MODEL_NAME}", label="Status", interactive=False ) model_dropdown.change( fn=switch_model, inputs=[model_dropdown], outputs=[model_status] ) with gr.Tabs(): # ============================================================ # Tab 1: Interactive Demo # ============================================================ with gr.Tab("Interactive Demo"): gr.Markdown(""" ### 2. Interactive Demonstration **Procedure**: 1. Upload an image 2. Enter a question about the image 3. The model will: - Step 1: Detect region of interest (ROI) and output bounding box - Step 2: Analyze the ROI and generate answer """) with gr.Row(): with gr.Column(scale=1): # Input image_input = gr.Image( type="pil", label="Input Image", height=400, ) question_input = gr.Textbox( label="Question", placeholder="Example: What is unusual about this image?", lines=3, ) with gr.Accordion("Advanced Parameters", open=False): temperature = gr.Slider( minimum=0.0, maximum=1.0, value=0.2, step=0.05, label="Temperature", info="0 = Deterministic, 1 = Creative" ) max_tokens = gr.Slider( minimum=128, maximum=1024, value=512, step=64, label="Maximum Output Tokens" ) submit_btn = gr.Button("Run Analysis", variant="primary", size="lg") clear_btn = gr.Button("Clear", size="sm") with gr.Column(scale=1): # Output gr.Markdown("### 3. Results") with gr.Group(): gr.Markdown("#### 3.1 Step 1: Region Detection") bbox_output = gr.Textbox( label="Detected Bounding Box Coordinates", lines=2, show_copy_button=True, ) with gr.Group(): gr.Markdown("#### 3.2 Step 2: Answer Generation") answer_output = gr.Textbox( label="Final Answer", lines=6, show_copy_button=True, ) with gr.Group(): gr.Markdown("#### 3.3 Visualization") image_output = gr.Image( label="Image with Bounding Box Overlay", type="pil", height=350, ) info_output = gr.Textbox( label="Processing Info", lines=1, visible=False, ) # Example images gr.Markdown("### šŸ“‹ Try These Examples") gr.Examples( examples=[ ["examples/extreme_ironing.jpg", "What is unusual about this image?"], ["examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"], ], inputs=[image_input, question_input], label="Click to load example", ) # Event handlers submit_btn.click( fn=generate_viscot_response, inputs=[image_input, question_input, temperature, max_tokens], outputs=[bbox_output, answer_output, image_output, info_output], ) clear_btn.click( fn=lambda: (None, "", "", "", None, ""), outputs=[image_input, question_input, bbox_output, answer_output, image_output, info_output], ) # ============================================================ # Tab 2: Benchmark Explorer # ============================================================ with gr.Tab("Benchmark Explorer"): gr.Markdown(""" ### Explore Visual-CoT Benchmark Examples Load and browse real examples from the Visual-CoT benchmark datasets. Each example includes: image, question, ground-truth bounding box, and answer. """) with gr.Row(): with gr.Column(scale=2): dataset_dropdown = gr.Dropdown( choices=list(BENCHMARK_DATASETS.keys()), value="Visual-CoT", label="Select Benchmark Dataset", info="Choose from 9 visual reasoning benchmarks" ) with gr.Column(scale=1): example_index = gr.Number( value=0, label="Example Index", precision=0, minimum=0, ) with gr.Row(): load_btn = gr.Button("Load Example", variant="primary") prev_btn = gr.Button("ā—€ Previous") next_btn = gr.Button("Next ā–¶") benchmark_status = gr.Textbox( label="Status", value="Select a dataset and click 'Load Example'", interactive=False, ) with gr.Row(): with gr.Column(): gr.Markdown("#### Image") benchmark_image = gr.Image( label="Input Image", type="pil", height=400, ) with gr.Column(): gr.Markdown("#### Annotations") benchmark_question = gr.Textbox( label="Question", lines=2, interactive=False, ) benchmark_bbox = gr.Textbox( label="Ground Truth Bounding Box", lines=1, interactive=False, ) benchmark_answer = gr.Textbox( label="Ground Truth Answer", lines=3, interactive=False, ) # Dataset information - dynamically generated from BENCHMARK_DATASETS dataset_info_md = "---\n\n### Available Benchmark Datasets\n\n" for i, (name, info) in enumerate(BENCHMARK_DATASETS.items(), 1): dataset_info_md += f"{i}. **{name}**: {info['description']}\n" dataset_info_md += f" - Path: `{info['path']}`\n" dataset_info_md += f"\n**Total:** {len(BENCHMARK_DATASETS)} benchmarks from Visual Chain-of-Thought Reasoning Collection\n" dataset_info_md += "\n**Source:** [Hugging Face Collection](https://huggingface.co/collections/tuandunghcmut/visual-chain-of-thought-reasoning-benchmarks)" gr.Markdown(dataset_info_md) # Event handlers def load_and_update(dataset_name, index): result = load_benchmark_example(dataset_name, int(index)) if len(result) == 5: return result else: # Error case return None, result, "", "", "" def increment_index(current_index): return int(current_index) + 1 def decrement_index(current_index): return max(0, int(current_index) - 1) load_btn.click( fn=load_and_update, inputs=[dataset_dropdown, example_index], outputs=[benchmark_image, benchmark_question, benchmark_bbox, benchmark_answer, benchmark_status], ) next_btn.click( fn=increment_index, inputs=[example_index], outputs=[example_index], ).then( fn=load_and_update, inputs=[dataset_dropdown, example_index], outputs=[benchmark_image, benchmark_question, benchmark_bbox, benchmark_answer, benchmark_status], ) prev_btn.click( fn=decrement_index, inputs=[example_index], outputs=[example_index], ).then( fn=load_and_update, inputs=[dataset_dropdown, example_index], outputs=[benchmark_image, benchmark_question, benchmark_bbox, benchmark_answer, benchmark_status], ) # ============================================================ # Tab 3: About & Paper # ============================================================ with gr.Tab("About"): gr.Markdown(""" ## Paper Information **Title:** Visual CoT: Advancing Multi-Modal Language Models with a Comprehensive Dataset and Benchmark for Chain-of-Thought Reasoning **Authors:** Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, Hongsheng Li **Conference:** NeurIPS 2024 (Spotlight) šŸŽ‰ **Abstract:** We introduce Visual-CoT, a comprehensive dataset and benchmark for evaluating chain-of-thought reasoning in multi-modal language models. Our dataset comprises 438K question-answer pairs with intermediate bounding box annotations highlighting key regions essential for answering questions. We propose a multi-turn processing pipeline that dynamically focuses on visual inputs and provides interpretable reasoning steps. --- ## Model Architecture ### Components 1. **Vision Encoder**: CLIP ViT-L/14 - Input resolution: 224px or 336px - Output: 577 visual tokens (336px) or 196 tokens (224px) - Feature dimension: 1024 2. **Multi-modal Projector**: 2-layer MLP with GELU - Maps vision features (1024D) to LLM embedding space (4096D) - Trainable parameters: ~8.4M 3. **Language Model**: Vicuna v1.5 (instruction-tuned LLaMA) - Variants: 7B or 13B parameters - Context length: 2048 tokens - Base: LLaMA architecture ### Multi-Turn Processing Pipeline ``` Image + Question ↓ [Turn 1] ROI Detection → Outputs: Bounding box coordinates [x1, y1, x2, y2] → Purpose: Identify key regions for reasoning ↓ [Turn 2] Question Answering → Input: Image + Question + Detected bbox → Output: Final answer grounded in visual evidence ``` --- ## Training Strategy ### Stage 1: Feature Alignment (Pretrain) - **Dataset**: 558K LAION-CC-SBU subset with BLIP captions - **Objective**: Connect frozen CLIP encoder to frozen LLM - **Trainable**: Only the MLP projector (~8.4M params) - **Duration**: 3.5 hours (7B) to 5.5 hours (13B) on 8ƗA100 GPUs - **Hyperparameters**: - Batch size: 256 - Learning rate: 1e-3 - Epochs: 1 - Max sequence length: 2048 ### Stage 2: Visual Instruction Tuning - **Dataset Mix**: - 665K multimodal instruction-following (LLaVA-1.5) - 1.4M positional annotation data (Shikra) - 373K Visual-CoT data (ours) - **Total**: ~2.4M training instances - **Training Details**: - Duration: ~60 hours (7B-224) on 8ƗA100 GPUs - Batch size: 128 - Learning rate: 2e-5 (backbone), 2e-6 (vision encoder) - Epochs: 1 - DeepSpeed ZeRO-3 for memory efficiency --- ## Dataset Construction ### Visual-CoT Dataset (438K examples) **13 Diverse Benchmarks:** 1. **Document Understanding** (4 datasets): - DocVQA: Document visual QA - InfographicsVQA: Infographic comprehension - DUDE: Document understanding - SROIE: Scanned receipt information extraction 2. **Scene Understanding** (3 datasets): - GQA: Scene graph compositional reasoning - Visual7W: Pointing and telling tasks - VSR: Visual spatial reasoning 3. **Text in Images** (2 datasets): - TextVQA: Reading text in natural images - OCR-VQA: OCR-based question answering 4. **General VQA** (2 datasets): - Visual Genome: Dense annotations - COCO: Common objects in context 5. **Specialized** (2 datasets): - CUB: Fine-grained bird classification - Flickr30k: Image captioning & grounding **Annotation Details:** - Each example includes: image, question, answer, bounding box - Bounding boxes highlight key regions essential for reasoning - 98K examples have detailed reasoning steps - Train/val splits maintained from original benchmarks --- ## Evaluation & Results ### Visual-CoT Benchmark Metrics 1. **Answer Accuracy**: GPT-3.5-based evaluation - Compares generated answer with ground truth - Accounts for semantic equivalence - Results: 82.7% average accuracy 2. **Detection Accuracy**: IoU-based bounding box evaluation - IoU > 0.5 threshold for correct detection - Results: 75.3% detection accuracy - Validates spatial grounding ability 3. **Reasoning Quality**: Chain-of-thought coherence - Multi-turn consistency - Interpretability of intermediate steps ### Model Comparison | Model | Resolution | Params | Answer Acc | Detection Acc | |-------|-----------|---------|-----------|---------------| | VisCoT-7B-224 | 224px | 7B | 80.1% | 72.5% | | VisCoT-7B-336 | 336px | 7B | 81.8% | 74.2% | | VisCoT-13B-224 | 224px | 13B | 81.5% | 73.8% | | VisCoT-13B-336 | 336px | 13B | 82.7% | 75.3% | **Trade-offs:** - Higher resolution → Better detail recognition, slower inference - Larger model → Better reasoning, more memory - 336px + 13B = Best quality but highest compute cost --- ## Resources - **Paper**: [arXiv:2403.16999](https://arxiv.org/abs/2403.16999) - **Code**: [GitHub](https://github.com/deepcs233/Visual-CoT) - **Dataset**: [Hugging Face](https://huggingface.co/datasets/deepcs233/Visual-CoT) - **Project Page**: [https://hao-shao.com/projects/viscot.html](https://hao-shao.com/projects/viscot.html) - **Models**: - [VisCoT-7b-224](https://huggingface.co/deepcs233/VisCoT-7b-224) - [VisCoT-7b-336](https://huggingface.co/deepcs233/VisCoT-7b-336) - [VisCoT-13b-224](https://huggingface.co/deepcs233/VisCoT-13b-224) - [VisCoT-13b-336](https://huggingface.co/deepcs233/VisCoT-13b-336) --- ## Citation If you find our work useful, please cite: ```bibtex @article{shao2024visual, title={Visual CoT: Unleashing Chain-of-Thought Reasoning in Multi-Modal Language Models}, author={Shao, Hao and Qian, Shengju and Xiao, Han and Song, Guanglu and Zong, Zhuofan and Wang, Letian and Liu, Yu and Li, Hongsheng}, journal={arXiv preprint arXiv:2403.16999}, year={2024} } ``` --- ## License - **Code**: Apache License 2.0 - **Dataset**: Research use only - **Models**: Subject to base LLM license (LLaMA) --- ## Acknowledgements This work is built upon: - [LLaVA](https://github.com/haotian-liu/LLaVA) - Base architecture - [Shikra](https://github.com/shikras/shikra) - Positional annotations - [Vicuna](https://github.com/lm-sys/FastChat) - Language model - [CLIP](https://github.com/openai/CLIP) - Vision encoder """) # Footer gr.Markdown(""" ---

Powered by Zero GPU on Hugging Face Spaces

""") return demo # ============================================================================= # Launch # ============================================================================= if __name__ == "__main__": demo = create_demo() demo.queue(max_size=20) # Enable queue for Zero GPU demo.launch()