Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import cv2 | |
| import numpy as np | |
| import os | |
| from PIL import Image | |
| import torch | |
| import torch.nn.functional as F | |
| from torchvision.transforms import Compose | |
| import tempfile | |
| from gradio_imageslider import ImageSlider | |
| from depth_anything.dpt import DepthAnything | |
| from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
| css = """ | |
| #img-display-container { | |
| max-height: 100vh; | |
| } | |
| #img-display-input { | |
| max-height: 80vh; | |
| } | |
| #img-display-output { | |
| max-height: 80vh; | |
| } | |
| """ | |
| DEVICE = 'cpu' | |
| encoder = 'vitl' # can also be 'vitb' or 'vitl' | |
| model = DepthAnything.from_pretrained(f"LiheYoung/depth_anything_{encoder}14").to(DEVICE).eval() | |
| title = "# Depth Anything with log" | |
| transform = Compose([ | |
| Resize( | |
| width=518, | |
| height=518, | |
| resize_target=False, | |
| keep_aspect_ratio=True, | |
| ensure_multiple_of=14, | |
| resize_method='lower_bound', | |
| image_interpolation_method=cv2.INTER_CUBIC, | |
| ), | |
| NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| PrepareForNet(), | |
| ]) | |
| def predict_depth(model, image): | |
| return model(image) | |
| with (gr.Blocks(css=css) as demo): | |
| gr.Markdown(title) | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') | |
| depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,) | |
| raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)") | |
| submit = gr.Button("Submit") | |
| def on_submit(image): | |
| original_image = image.copy() | |
| h, w = image.shape[:2] | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 | |
| image = transform({'image': image})['image'] | |
| image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) | |
| depth = predict_depth(model, image) | |
| depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] | |
| raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16')) | |
| tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
| raw_depth.save(tmp.name) | |
| # depth = (depth - depth.min()) / (depth.max() - depth.min()) *255. | |
| image_flattened = depth.view(image.size(0), -1) | |
| # 计算分位数阈值 | |
| lower_quantile = torch.quantile(image_flattened, 0.05, dim=1, keepdim=True) | |
| upper_quantile = torch.quantile(image_flattened, 0.95, dim=1, keepdim=True) | |
| # 应用阈值,去除极值 | |
| clamped_image_flattened = torch.clamp(image_flattened, lower_quantile, upper_quantile) | |
| # 恢复图像到原始形状 | |
| clamped_image = clamped_image_flattened.view_as(depth) | |
| epsilon = 1e-7 # 一个小的正值,以避免计算log(0) | |
| log_image = torch.log(clamped_image + epsilon) | |
| depth = (log_image - log_image.min()) / (log_image.max() - log_image.min()) *255. | |
| depth = depth.cpu().numpy().astype(np.uint8) | |
| return [(original_image, depth), tmp.name] | |
| submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, raw_file]) | |
| if __name__ == '__main__': | |
| demo.queue().launch() |