Spaces:
Runtime error
Runtime error
vgvm
commited on
Commit
·
38c3b1f
1
Parent(s):
b9ca9c7
ui cleanup
Browse files
app.py
CHANGED
|
@@ -22,40 +22,15 @@ class face_image_to_face_mesh:
|
|
| 22 |
def __init__(self):
|
| 23 |
self.zoe_me = True
|
| 24 |
self.uvwrap = not True
|
| 25 |
-
self.css = ("""
|
| 26 |
-
#mesh-display-output {
|
| 27 |
-
max-height: 44vh;
|
| 28 |
-
max-width: 44vh;
|
| 29 |
-
width:auto;
|
| 30 |
-
height:auto
|
| 31 |
-
}
|
| 32 |
-
#img-display-output {
|
| 33 |
-
max-height: 28vh;
|
| 34 |
-
max-width: 28vh;
|
| 35 |
-
width:auto;
|
| 36 |
-
height:auto
|
| 37 |
-
}
|
| 38 |
-
""")
|
| 39 |
|
| 40 |
def demo(self):
|
| 41 |
if self.zoe_me:
|
| 42 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 43 |
self.zoe = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to(DEVICE).eval()
|
| 44 |
|
| 45 |
-
demo = gr.Blocks(css=self.css, cache_examples=True)
|
| 46 |
with demo:
|
| 47 |
-
gr.Markdown(
|
| 48 |
-
# Face Image to Face Quad Mesh
|
| 49 |
-
|
| 50 |
-
Uses MediaPipe to detect a face in an image and convert it to a quad mesh.
|
| 51 |
-
Saves to OBJ since gltf does not support quad faces. The 3d viewer has Y pointing the opposite direction from Blender, so ya hafta spin it.
|
| 52 |
-
|
| 53 |
-
The face depth with Zoe can be a bit much and without it is a bit generic. In blender you can fix this just by snapping to the high poly model.
|
| 54 |
-
|
| 55 |
-
Highly recommend running it locally. The 3D model has uv values in the faces, but you will have to make the mlt file manually at this point."
|
| 56 |
-
|
| 57 |
-
Quick import result in examples/converted/movie-gallery.mp4 under files
|
| 58 |
-
""")
|
| 59 |
|
| 60 |
with gr.Row():
|
| 61 |
with gr.Column():
|
|
@@ -73,70 +48,14 @@ class face_image_to_face_mesh:
|
|
| 73 |
upload_image_btn = gr.Button(value="Detect faces")
|
| 74 |
if self.zoe_me:
|
| 75 |
with gr.Group():
|
| 76 |
-
|
| 77 |
-
gr.
|
| 78 |
-
|
| 79 |
-
gr.Textbox(show_label=False, value="How much to scale the ZoeDepth. 2x is pretty dramatic...")
|
| 80 |
else:
|
| 81 |
use_zoe = False
|
| 82 |
zoe_scale = 0
|
| 83 |
with gr.Group():
|
| 84 |
-
|
| 85 |
-
gr.Textbox(show_label=False, value="Minimum confidence value ([0.0, 1.0]) from the face detection model for the detection to be considered successful.")
|
| 86 |
-
with gr.Group():
|
| 87 |
-
gr.Markdown(
|
| 88 |
-
"""
|
| 89 |
-
# Using the Textured Mesh in Blender
|
| 90 |
-
|
| 91 |
-
There a couple of annoying steps atm after you download the obj from the 3d viewer.
|
| 92 |
-
|
| 93 |
-
You can use the script meshin-around.sh in the files section to do the conversion or manually:
|
| 94 |
-
|
| 95 |
-
1. edit the file and change the mtllib line to use fun.mtl
|
| 96 |
-
2. replace / delete all lines that start with 'f', eg :%s,^f.*,,
|
| 97 |
-
3. uncomment all the lines that start with '#f', eg: :%s,^#f,f,
|
| 98 |
-
4. save and exit
|
| 99 |
-
5. create fun.mtl to point to the texture like:
|
| 100 |
-
|
| 101 |
-
```
|
| 102 |
-
newmtl MyMaterial
|
| 103 |
-
map_Kd fun.png
|
| 104 |
-
```
|
| 105 |
-
|
| 106 |
-
Make sure the obj, mtl and png are all in the same directory
|
| 107 |
-
|
| 108 |
-
Now the import will have the texture data: File -> Import -> Wavefront (obj) -> fun.obj
|
| 109 |
-
|
| 110 |
-
This is all a work around for a weird hf+gradios+babylonjs bug which seems to be related to the version
|
| 111 |
-
of babylonjs being used... It works fine in a local babylonjs sandbox...
|
| 112 |
-
|
| 113 |
-
# Suggested Workflows
|
| 114 |
-
|
| 115 |
-
Here are some workflow ideas.
|
| 116 |
-
|
| 117 |
-
## retopologize high poly face mesh
|
| 118 |
-
|
| 119 |
-
1. sculpt high poly mesh in blender
|
| 120 |
-
2. snapshot the face
|
| 121 |
-
3. generate the mesh using the mediapipe stuff
|
| 122 |
-
4. import the low poly mediapipe face
|
| 123 |
-
5. snap the mesh to the high poly model
|
| 124 |
-
6. model the rest of the low poly model
|
| 125 |
-
7. bake the normal / etc maps to the low poly face model
|
| 126 |
-
8. it's just that easy 😛
|
| 127 |
-
|
| 128 |
-
Ideally it would be a plugin...
|
| 129 |
-
|
| 130 |
-
## stable diffusion integration
|
| 131 |
-
|
| 132 |
-
1. generate a face in sd
|
| 133 |
-
2. generate the mesh
|
| 134 |
-
3. repose it and use it for further generation
|
| 135 |
-
|
| 136 |
-
May need to expanded the generated mesh to cover more, maybe with
|
| 137 |
-
<a href="https://github.com/shunsukesaito/PIFu" target="_blank">PIFu model</a>.
|
| 138 |
-
|
| 139 |
-
""")
|
| 140 |
|
| 141 |
with gr.Column():
|
| 142 |
with gr.Group():
|
|
@@ -147,13 +66,13 @@ class face_image_to_face_mesh:
|
|
| 147 |
|
| 148 |
upload_image_btn.click(
|
| 149 |
fn=self.detect,
|
| 150 |
-
inputs=[upload_image, min_detection_confidence,
|
| 151 |
outputs=[output_mesh, output_image, depth_image, num_faces_detected]
|
| 152 |
)
|
| 153 |
demo.launch()
|
| 154 |
|
| 155 |
|
| 156 |
-
def detect(self, image, min_detection_confidence,
|
| 157 |
width = image.shape[1]
|
| 158 |
height = image.shape[0]
|
| 159 |
ratio = width / height
|
|
@@ -164,7 +83,7 @@ class face_image_to_face_mesh:
|
|
| 164 |
|
| 165 |
mesh = "examples/converted/in-granny.obj"
|
| 166 |
|
| 167 |
-
if self.zoe_me and
|
| 168 |
depth = self.zoe.infer_pil(image)
|
| 169 |
idepth = colorize(depth, cmap='gray_r')
|
| 170 |
else:
|
|
@@ -182,7 +101,7 @@ class face_image_to_face_mesh:
|
|
| 182 |
|
| 183 |
annotated_image = image.copy()
|
| 184 |
for face_landmarks in results.multi_face_landmarks:
|
| 185 |
-
(mesh,mtl,png) = self.toObj(image=image, width=width, height=height, ratio=ratio, landmark_list=face_landmarks, depth=depth, zoe_scale=zoe_scale)
|
| 186 |
|
| 187 |
mp_drawing.draw_landmarks(
|
| 188 |
image=annotated_image,
|
|
@@ -201,7 +120,7 @@ class face_image_to_face_mesh:
|
|
| 201 |
|
| 202 |
return mesh, annotated_image, idepth, 1
|
| 203 |
|
| 204 |
-
def toObj( self, image: np.ndarray, width:int, height:int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float):
|
| 205 |
print( f'you have such pretty hair', self.temp_dir )
|
| 206 |
|
| 207 |
hf_hack = True
|
|
@@ -215,7 +134,7 @@ class face_image_to_face_mesh:
|
|
| 215 |
png_file = tempfile.NamedTemporaryFile(suffix='.png', dir=self.temp_dir, delete=False)
|
| 216 |
|
| 217 |
############################################
|
| 218 |
-
(points,coordinates,colors) = self.landmarksToPoints( image, width, height, ratio, landmark_list, depth, zoe_scale )
|
| 219 |
############################################
|
| 220 |
|
| 221 |
lines = []
|
|
@@ -281,7 +200,7 @@ class face_image_to_face_mesh:
|
|
| 281 |
print( f'I know it is special to you so I saved it to {obj_file.name} since we are friends' )
|
| 282 |
return (obj_file.name,mtl_file.name,png_file.name)
|
| 283 |
|
| 284 |
-
def landmarksToPoints( self, image:np.ndarray, width: int, height: int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float ):
|
| 285 |
points = [] # 3d vertices
|
| 286 |
coordinates = [] # 2d texture coordinates
|
| 287 |
colors = [] # 3d rgb info
|
|
@@ -289,21 +208,20 @@ class face_image_to_face_mesh:
|
|
| 289 |
mins = [+np.inf] * 3
|
| 290 |
maxs = [-np.inf] * 3
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
landmark.visibility < _VISIBILITY_THRESHOLD) or
|
| 295 |
-
(landmark.HasField('presence') and
|
| 296 |
-
landmark.presence < _PRESENCE_THRESHOLD)):
|
| 297 |
-
idk_what_to_do_for_this = True
|
| 298 |
|
|
|
|
| 299 |
x, y = _normalized_to_pixel_coordinates(landmark.x,landmark.y,width,height)
|
| 300 |
color = image[y,x]
|
| 301 |
colors.append( [value / 255 for value in color ] )
|
| 302 |
coordinates.append( [x/width,1-y/height] )
|
| 303 |
|
| 304 |
if depth is not None:
|
| 305 |
-
landmark.z = depth[y, x] * zoe_scale
|
| 306 |
-
|
|
|
|
|
|
|
| 307 |
point = [landmark.x * ratio, landmark.y, landmark.z];
|
| 308 |
for pidx,value in enumerate( point ):
|
| 309 |
mins[pidx] = min(mins[pidx],value)
|
|
@@ -319,6 +237,7 @@ class face_image_to_face_mesh:
|
|
| 319 |
print( f'maxs: {maxs}' )
|
| 320 |
return (points,coordinates,colors)
|
| 321 |
|
|
|
|
| 322 |
def totallyNormal(self, p0, p1, p2):
|
| 323 |
v1 = np.array(p1) - np.array(p0)
|
| 324 |
v2 = np.array(p2) - np.array(p0)
|
|
@@ -327,6 +246,93 @@ class face_image_to_face_mesh:
|
|
| 327 |
return normal.tolist()
|
| 328 |
|
| 329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
face_image_to_face_mesh().demo()
|
| 331 |
|
| 332 |
# EOF
|
|
|
|
| 22 |
def __init__(self):
|
| 23 |
self.zoe_me = True
|
| 24 |
self.uvwrap = not True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def demo(self):
|
| 27 |
if self.zoe_me:
|
| 28 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 29 |
self.zoe = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to(DEVICE).eval()
|
| 30 |
|
| 31 |
+
demo = gr.Blocks(css=self.css(), cache_examples=True)
|
| 32 |
with demo:
|
| 33 |
+
gr.Markdown(self.header())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
with gr.Row():
|
| 36 |
with gr.Column():
|
|
|
|
| 48 |
upload_image_btn = gr.Button(value="Detect faces")
|
| 49 |
if self.zoe_me:
|
| 50 |
with gr.Group():
|
| 51 |
+
zoe_scale = gr.Slider(label="Mix the ZoeDepth with the MediaPipe Depth", value=1, minimum=0, maximum=1, step=.01)
|
| 52 |
+
flat_scale = gr.Slider(label="Depth scale, smaller is flatter and possibly more flattering", value=1, minimum=0, maximum=1, step=.01)
|
| 53 |
+
min_detection_confidence = gr.Slider(label="Mininum face detection confidence", value=.5, minimum=0, maximum=1.0, step=0.01)
|
|
|
|
| 54 |
else:
|
| 55 |
use_zoe = False
|
| 56 |
zoe_scale = 0
|
| 57 |
with gr.Group():
|
| 58 |
+
gr.Markdown(self.footer())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
with gr.Column():
|
| 61 |
with gr.Group():
|
|
|
|
| 66 |
|
| 67 |
upload_image_btn.click(
|
| 68 |
fn=self.detect,
|
| 69 |
+
inputs=[upload_image, min_detection_confidence,zoe_scale,flat_scale],
|
| 70 |
outputs=[output_mesh, output_image, depth_image, num_faces_detected]
|
| 71 |
)
|
| 72 |
demo.launch()
|
| 73 |
|
| 74 |
|
| 75 |
+
def detect(self, image, min_detection_confidence, zoe_scale, flat_scale):
|
| 76 |
width = image.shape[1]
|
| 77 |
height = image.shape[0]
|
| 78 |
ratio = width / height
|
|
|
|
| 83 |
|
| 84 |
mesh = "examples/converted/in-granny.obj"
|
| 85 |
|
| 86 |
+
if self.zoe_me and 0 < zoe_scale:
|
| 87 |
depth = self.zoe.infer_pil(image)
|
| 88 |
idepth = colorize(depth, cmap='gray_r')
|
| 89 |
else:
|
|
|
|
| 101 |
|
| 102 |
annotated_image = image.copy()
|
| 103 |
for face_landmarks in results.multi_face_landmarks:
|
| 104 |
+
(mesh,mtl,png) = self.toObj(image=image, width=width, height=height, ratio=ratio, landmark_list=face_landmarks, depth=depth, zoe_scale=zoe_scale, flat_scale=flat_scale)
|
| 105 |
|
| 106 |
mp_drawing.draw_landmarks(
|
| 107 |
image=annotated_image,
|
|
|
|
| 120 |
|
| 121 |
return mesh, annotated_image, idepth, 1
|
| 122 |
|
| 123 |
+
def toObj( self, image: np.ndarray, width:int, height:int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float, flat_scale: float):
|
| 124 |
print( f'you have such pretty hair', self.temp_dir )
|
| 125 |
|
| 126 |
hf_hack = True
|
|
|
|
| 134 |
png_file = tempfile.NamedTemporaryFile(suffix='.png', dir=self.temp_dir, delete=False)
|
| 135 |
|
| 136 |
############################################
|
| 137 |
+
(points,coordinates,colors) = self.landmarksToPoints( image, width, height, ratio, landmark_list, depth, zoe_scale, flat_scale )
|
| 138 |
############################################
|
| 139 |
|
| 140 |
lines = []
|
|
|
|
| 200 |
print( f'I know it is special to you so I saved it to {obj_file.name} since we are friends' )
|
| 201 |
return (obj_file.name,mtl_file.name,png_file.name)
|
| 202 |
|
| 203 |
+
def landmarksToPoints( self, image:np.ndarray, width: int, height: int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float, flat_scale: float ):
|
| 204 |
points = [] # 3d vertices
|
| 205 |
coordinates = [] # 2d texture coordinates
|
| 206 |
colors = [] # 3d rgb info
|
|
|
|
| 208 |
mins = [+np.inf] * 3
|
| 209 |
maxs = [-np.inf] * 3
|
| 210 |
|
| 211 |
+
mp_scale = 1 - zoe_scale
|
| 212 |
+
print( f'zoe_scale:{zoe_scale}, mp_scale:{mp_scale}' )
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
+
for idx, landmark in enumerate(landmark_list.landmark):
|
| 215 |
x, y = _normalized_to_pixel_coordinates(landmark.x,landmark.y,width,height)
|
| 216 |
color = image[y,x]
|
| 217 |
colors.append( [value / 255 for value in color ] )
|
| 218 |
coordinates.append( [x/width,1-y/height] )
|
| 219 |
|
| 220 |
if depth is not None:
|
| 221 |
+
landmark.z = depth[y, x] * zoe_scale + mp_scale * landmark.z
|
| 222 |
+
|
| 223 |
+
landmark.z = landmark.z * flat_scale
|
| 224 |
+
|
| 225 |
point = [landmark.x * ratio, landmark.y, landmark.z];
|
| 226 |
for pidx,value in enumerate( point ):
|
| 227 |
mins[pidx] = min(mins[pidx],value)
|
|
|
|
| 237 |
print( f'maxs: {maxs}' )
|
| 238 |
return (points,coordinates,colors)
|
| 239 |
|
| 240 |
+
|
| 241 |
def totallyNormal(self, p0, p1, p2):
|
| 242 |
v1 = np.array(p1) - np.array(p0)
|
| 243 |
v2 = np.array(p2) - np.array(p0)
|
|
|
|
| 246 |
return normal.tolist()
|
| 247 |
|
| 248 |
|
| 249 |
+
def header(self):
|
| 250 |
+
return ("""
|
| 251 |
+
# Image to Quad Mesh
|
| 252 |
+
|
| 253 |
+
Uses MediaPipe to detect a face in an image and convert it to a quad mesh.
|
| 254 |
+
Saves to OBJ since gltf does not support quad faces. The 3d viewer has Y pointing the opposite direction from Blender, so ya hafta spin it.
|
| 255 |
+
|
| 256 |
+
The face depth with Zoe can be a bit much and without it is a bit generic. In blender you can fix this just by snapping to the high poly model. For photos turning it down to .4 helps, but may still need cleanup...
|
| 257 |
+
|
| 258 |
+
Highly recommend running it locally. The 3D model has uv values in the faces, but you will have to either use the script or do some manually tomfoolery.
|
| 259 |
+
|
| 260 |
+
Quick import result in examples/converted/movie-gallery.mp4 under files
|
| 261 |
+
""")
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def footer(self):
|
| 265 |
+
return ( """
|
| 266 |
+
# Using the Textured Mesh in Blender
|
| 267 |
+
|
| 268 |
+
There a couple of annoying steps atm after you download the obj from the 3d viewer.
|
| 269 |
+
|
| 270 |
+
You can use the script meshin-around.sh in the files section to do the conversion or manually:
|
| 271 |
+
|
| 272 |
+
1. edit the file and change the mtllib line to use fun.mtl
|
| 273 |
+
2. replace / delete all lines that start with 'f', eg :%s,^f.*,,
|
| 274 |
+
3. uncomment all the lines that start with '#f', eg: :%s,^#f,f,
|
| 275 |
+
4. save and exit
|
| 276 |
+
5. create fun.mtl to point to the texture like:
|
| 277 |
+
|
| 278 |
+
```
|
| 279 |
+
newmtl MyMaterial
|
| 280 |
+
map_Kd fun.png
|
| 281 |
+
```
|
| 282 |
+
|
| 283 |
+
Make sure the obj, mtl and png are all in the same directory
|
| 284 |
+
|
| 285 |
+
Now the import will have the texture data: File -> Import -> Wavefront (obj) -> fun.obj
|
| 286 |
+
|
| 287 |
+
This is all a work around for a weird hf+gradios+babylonjs bug which seems to be related to the version
|
| 288 |
+
of babylonjs being used... It works fine in a local babylonjs sandbox...
|
| 289 |
+
|
| 290 |
+
# Suggested Workflows
|
| 291 |
+
|
| 292 |
+
Here are some workflow ideas.
|
| 293 |
+
|
| 294 |
+
## retopologize high poly face mesh
|
| 295 |
+
|
| 296 |
+
1. sculpt high poly mesh in blender
|
| 297 |
+
2. snapshot the face
|
| 298 |
+
3. generate the mesh using the mediapipe stuff
|
| 299 |
+
4. import the low poly mediapipe face
|
| 300 |
+
5. snap the mesh to the high poly model
|
| 301 |
+
6. model the rest of the low poly model
|
| 302 |
+
7. bake the normal / etc maps to the low poly face model
|
| 303 |
+
8. it's just that easy 😛
|
| 304 |
+
|
| 305 |
+
Ideally it would be a plugin...
|
| 306 |
+
|
| 307 |
+
## stable diffusion integration
|
| 308 |
+
|
| 309 |
+
1. generate a face in sd
|
| 310 |
+
2. generate the mesh
|
| 311 |
+
3. repose it and use it for further generation
|
| 312 |
+
|
| 313 |
+
May need to expanded the generated mesh to cover more, maybe with
|
| 314 |
+
<a href="https://github.com/shunsukesaito/PIFu" target="_blank">PIFu model</a>.
|
| 315 |
+
|
| 316 |
+
""")
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def css(self):
|
| 320 |
+
return ("""
|
| 321 |
+
#mesh-display-output {
|
| 322 |
+
max-height: 44vh;
|
| 323 |
+
max-width: 44vh;
|
| 324 |
+
width:auto;
|
| 325 |
+
height:auto
|
| 326 |
+
}
|
| 327 |
+
#img-display-output {
|
| 328 |
+
max-height: 28vh;
|
| 329 |
+
max-width: 28vh;
|
| 330 |
+
width:auto;
|
| 331 |
+
height:auto
|
| 332 |
+
}
|
| 333 |
+
""")
|
| 334 |
+
|
| 335 |
+
|
| 336 |
face_image_to_face_mesh().demo()
|
| 337 |
|
| 338 |
# EOF
|