Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +78 -354
- codet5_summarizer.py +183 -0
app.py
CHANGED
|
@@ -1,360 +1,84 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
|
| 7 |
-
|
| 8 |
-
CODET5_MODEL = "Salesforce/codet5-base-multi-sum"
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# Initialize model and tokenizer
|
| 16 |
-
with st.spinner("Loading CodeT5 model... this may take a minute..."):
|
| 17 |
-
self.tokenizer = AutoTokenizer.from_pretrained(CODET5_MODEL)
|
| 18 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained(CODET5_MODEL).to(self.device)
|
| 19 |
-
|
| 20 |
-
def preprocess_code(self, code):
|
| 21 |
-
"""Clean and preprocess the Python code."""
|
| 22 |
-
# Remove empty lines
|
| 23 |
-
code = re.sub(r'\n\s*\n', '\n', code)
|
| 24 |
-
|
| 25 |
-
# Remove excessive comments (keeping docstrings)
|
| 26 |
-
code_lines = []
|
| 27 |
-
in_docstring = False
|
| 28 |
-
docstring_delimiter = None
|
| 29 |
-
|
| 30 |
-
for line in code.split('\n'):
|
| 31 |
-
# Check for docstring delimiters
|
| 32 |
-
if '"""' in line or "'''" in line:
|
| 33 |
-
delimiter = '"""' if '"""' in line else "'''"
|
| 34 |
-
if not in_docstring:
|
| 35 |
-
in_docstring = True
|
| 36 |
-
docstring_delimiter = delimiter
|
| 37 |
-
elif docstring_delimiter == delimiter:
|
| 38 |
-
in_docstring = False
|
| 39 |
-
docstring_delimiter = None
|
| 40 |
-
|
| 41 |
-
# Keep docstrings and non-comment lines
|
| 42 |
-
if in_docstring or not line.strip().startswith('#'):
|
| 43 |
-
code_lines.append(line)
|
| 44 |
-
|
| 45 |
-
processed_code = '\n'.join(code_lines)
|
| 46 |
-
|
| 47 |
-
# Normalize whitespace
|
| 48 |
-
processed_code = re.sub(r' +', ' ', processed_code)
|
| 49 |
-
|
| 50 |
-
return processed_code
|
| 51 |
-
|
| 52 |
-
def extract_functions(self, code):
|
| 53 |
-
"""Extract individual functions for summarization"""
|
| 54 |
-
# Simple regex to find function definitions
|
| 55 |
-
function_pattern = r'def\s+([a-zA-Z_][a-zA-Z0-9_]*)\s*\(.*?\).*?:'
|
| 56 |
-
function_matches = re.finditer(function_pattern, code, re.DOTALL)
|
| 57 |
-
|
| 58 |
-
functions = []
|
| 59 |
-
for match in function_matches:
|
| 60 |
-
start_pos = match.start()
|
| 61 |
-
# Find the function body
|
| 62 |
-
function_name = match.group(1)
|
| 63 |
-
lines = code[start_pos:].split('\n')
|
| 64 |
-
|
| 65 |
-
# Skip the function definition line
|
| 66 |
-
body_start = 1
|
| 67 |
-
while body_start < len(lines) and not lines[body_start].strip():
|
| 68 |
-
body_start += 1
|
| 69 |
-
|
| 70 |
-
if body_start < len(lines):
|
| 71 |
-
# Get the indentation of the function body
|
| 72 |
-
body_indent = len(lines[body_start]) - len(lines[body_start].lstrip())
|
| 73 |
-
|
| 74 |
-
# Gather all lines with at least this indentation
|
| 75 |
-
function_body = [lines[0]] # The function definition
|
| 76 |
-
i = 1
|
| 77 |
-
while i < len(lines):
|
| 78 |
-
line = lines[i]
|
| 79 |
-
if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'):
|
| 80 |
-
break
|
| 81 |
-
function_body.append(line)
|
| 82 |
-
i += 1
|
| 83 |
-
|
| 84 |
-
function_code = '\n'.join(function_body)
|
| 85 |
-
functions.append((function_name, function_code))
|
| 86 |
-
|
| 87 |
-
# Simple regex to find class methods
|
| 88 |
-
class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)'
|
| 89 |
-
class_matches = re.finditer(class_pattern, code, re.DOTALL)
|
| 90 |
-
|
| 91 |
-
for match in class_matches:
|
| 92 |
-
class_name = match.group(1)
|
| 93 |
-
start_pos = match.start()
|
| 94 |
-
|
| 95 |
-
# Find class methods using the function pattern
|
| 96 |
-
class_code = code[start_pos:]
|
| 97 |
-
method_matches = re.finditer(function_pattern, class_code, re.DOTALL)
|
| 98 |
-
|
| 99 |
-
for method_match in method_matches:
|
| 100 |
-
method_name = method_match.group(1)
|
| 101 |
-
# Skip if this is not a method (i.e., it's a function outside the class)
|
| 102 |
-
if method_match.start() > 200: # Simple heuristic to check if method is within class scope
|
| 103 |
-
break
|
| 104 |
-
|
| 105 |
-
# Get the full method code
|
| 106 |
-
method_start = method_match.start()
|
| 107 |
-
method_lines = class_code[method_start:].split('\n')
|
| 108 |
-
|
| 109 |
-
# Skip the method definition line
|
| 110 |
-
body_start = 1
|
| 111 |
-
while body_start < len(method_lines) and not method_lines[body_start].strip():
|
| 112 |
-
body_start += 1
|
| 113 |
-
|
| 114 |
-
if body_start < len(method_lines):
|
| 115 |
-
# Get the indentation of the method body
|
| 116 |
-
body_indent = len(method_lines[body_start]) - len(method_lines[body_start].lstrip())
|
| 117 |
-
|
| 118 |
-
# Gather all lines with at least this indentation
|
| 119 |
-
method_body = [method_lines[0]] # The method definition
|
| 120 |
-
i = 1
|
| 121 |
-
while i < len(method_lines):
|
| 122 |
-
line = method_lines[i]
|
| 123 |
-
if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'):
|
| 124 |
-
break
|
| 125 |
-
method_body.append(line)
|
| 126 |
-
i += 1
|
| 127 |
-
|
| 128 |
-
method_code = '\n'.join(method_body)
|
| 129 |
-
functions.append((f"{class_name}.{method_name}", method_code))
|
| 130 |
-
|
| 131 |
-
return functions
|
| 132 |
-
|
| 133 |
-
def extract_classes(self, code):
|
| 134 |
-
"""Extract class definitions for summarization"""
|
| 135 |
-
class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)'
|
| 136 |
-
class_matches = re.finditer(class_pattern, code, re.DOTALL)
|
| 137 |
-
|
| 138 |
-
classes = []
|
| 139 |
-
for match in class_matches:
|
| 140 |
-
class_name = match.group(1)
|
| 141 |
-
start_pos = match.start()
|
| 142 |
-
|
| 143 |
-
# Extract class body
|
| 144 |
-
class_lines = code[start_pos:].split('\n')
|
| 145 |
-
|
| 146 |
-
# Skip the class definition line
|
| 147 |
-
body_start = 1
|
| 148 |
-
while body_start < len(class_lines) and not class_lines[body_start].strip():
|
| 149 |
-
body_start += 1
|
| 150 |
-
|
| 151 |
-
if body_start < len(class_lines):
|
| 152 |
-
# Get the indentation of the class body
|
| 153 |
-
body_indent = len(class_lines[body_start]) - len(class_lines[body_start].lstrip())
|
| 154 |
-
|
| 155 |
-
# Gather all lines with at least this indentation
|
| 156 |
-
class_body = [class_lines[0]] # The class definition
|
| 157 |
-
i = 1
|
| 158 |
-
while i < len(class_lines):
|
| 159 |
-
line = class_lines[i]
|
| 160 |
-
if line.strip() and (len(line) - len(line.lstrip())) < body_indent:
|
| 161 |
-
break
|
| 162 |
-
class_body.append(line)
|
| 163 |
-
i += 1
|
| 164 |
-
|
| 165 |
-
class_code = '\n'.join(class_body)
|
| 166 |
-
classes.append((class_name, class_code))
|
| 167 |
-
|
| 168 |
-
return classes
|
| 169 |
-
|
| 170 |
-
def summarize(self, code, max_length=50):
|
| 171 |
-
"""Generate summary using CodeT5."""
|
| 172 |
-
# Truncate input if needed
|
| 173 |
-
max_input_length = 512 # CodeT5 typically accepts up to 512 tokens
|
| 174 |
-
tokenized_code = self.tokenizer(code, truncation=True, max_length=max_input_length, return_tensors="pt").to(self.device)
|
| 175 |
-
|
| 176 |
-
with torch.no_grad():
|
| 177 |
-
generated_ids = self.model.generate(
|
| 178 |
-
tokenized_code["input_ids"],
|
| 179 |
-
max_length=max_length,
|
| 180 |
-
num_beams=4,
|
| 181 |
-
early_stopping=True
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
summary = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
| 185 |
-
return summary
|
| 186 |
-
|
| 187 |
-
def summarize_code(self, code, summarize_functions=True, summarize_classes=True):
|
| 188 |
-
"""
|
| 189 |
-
Generate full file summary and optionally function/class level summaries.
|
| 190 |
-
Returns a dictionary with summaries.
|
| 191 |
-
"""
|
| 192 |
-
preprocessed_code = self.preprocess_code(code)
|
| 193 |
-
|
| 194 |
-
results = {
|
| 195 |
-
"file_summary": None,
|
| 196 |
-
"function_summaries": {},
|
| 197 |
-
"class_summaries": {}
|
| 198 |
-
}
|
| 199 |
-
|
| 200 |
-
# Generate file-level summary
|
| 201 |
-
try:
|
| 202 |
-
file_summary = self.summarize(preprocessed_code)
|
| 203 |
-
results["file_summary"] = file_summary
|
| 204 |
-
except Exception as e:
|
| 205 |
-
results["file_summary"] = f"Error generating file summary: {str(e)}"
|
| 206 |
-
|
| 207 |
-
# Generate function-level summaries if requested
|
| 208 |
-
if summarize_functions:
|
| 209 |
-
functions = self.extract_functions(preprocessed_code)
|
| 210 |
-
|
| 211 |
-
for function_name, function_code in functions:
|
| 212 |
-
try:
|
| 213 |
-
summary = self.summarize(function_code)
|
| 214 |
-
results["function_summaries"][function_name] = summary
|
| 215 |
-
except Exception as e:
|
| 216 |
-
results["function_summaries"][function_name] = f"Error: {str(e)}"
|
| 217 |
-
|
| 218 |
-
# Generate class-level summaries if requested
|
| 219 |
-
if summarize_classes:
|
| 220 |
-
classes = self.extract_classes(preprocessed_code)
|
| 221 |
-
|
| 222 |
-
for class_name, class_code in classes:
|
| 223 |
-
try:
|
| 224 |
-
summary = self.summarize(class_code)
|
| 225 |
-
results["class_summaries"][class_name] = summary
|
| 226 |
-
except Exception as e:
|
| 227 |
-
results["class_summaries"][class_name] = f"Error: {str(e)}"
|
| 228 |
-
|
| 229 |
-
return results
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
st.
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
""
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
with col2:
|
| 268 |
-
summarize_classes = st.checkbox("Generate class summaries", value=True)
|
| 269 |
-
|
| 270 |
-
if st.button("Summarize Code", key="summarize_file"):
|
| 271 |
-
with st.spinner("Generating summaries..."):
|
| 272 |
-
start_time = time.time()
|
| 273 |
-
summaries = st.session_state.summarizer.summarize_code(
|
| 274 |
-
code,
|
| 275 |
-
summarize_functions=summarize_functions,
|
| 276 |
-
summarize_classes=summarize_classes
|
| 277 |
-
)
|
| 278 |
-
end_time = time.time()
|
| 279 |
-
|
| 280 |
-
# Display summaries
|
| 281 |
-
st.success(f"Summarization completed in {end_time - start_time:.2f} seconds!")
|
| 282 |
-
|
| 283 |
-
# File summary
|
| 284 |
-
st.subheader("File Summary")
|
| 285 |
-
st.write(summaries["file_summary"])
|
| 286 |
-
|
| 287 |
-
# Function summaries
|
| 288 |
-
if summarize_functions and summaries["function_summaries"]:
|
| 289 |
-
st.subheader("Function Summaries")
|
| 290 |
-
for func_name, summary in summaries["function_summaries"].items():
|
| 291 |
-
with st.expander(f"Function: {func_name}"):
|
| 292 |
-
st.write(summary)
|
| 293 |
-
|
| 294 |
-
# Class summaries
|
| 295 |
-
if summarize_classes and summaries["class_summaries"]:
|
| 296 |
-
st.subheader("Class Summaries")
|
| 297 |
-
for class_name, summary in summaries["class_summaries"].items():
|
| 298 |
-
with st.expander(f"Class: {class_name}"):
|
| 299 |
-
st.write(summary)
|
| 300 |
-
|
| 301 |
-
with tab2:
|
| 302 |
-
code = st.text_area("Paste Python code here", height=300)
|
| 303 |
-
if code:
|
| 304 |
-
# Add summarization options
|
| 305 |
-
st.subheader("Summarization Options")
|
| 306 |
-
col1, col2 = st.columns(2)
|
| 307 |
-
with col1:
|
| 308 |
-
summarize_functions = st.checkbox("Generate function summaries", value=True, key="func_paste")
|
| 309 |
-
with col2:
|
| 310 |
-
summarize_classes = st.checkbox("Generate class summaries", value=True, key="class_paste")
|
| 311 |
-
|
| 312 |
-
if st.button("Summarize Code", key="summarize_paste"):
|
| 313 |
-
with st.spinner("Generating summaries..."):
|
| 314 |
-
start_time = time.time()
|
| 315 |
-
summaries = st.session_state.summarizer.summarize_code(
|
| 316 |
-
code,
|
| 317 |
-
summarize_functions=summarize_functions,
|
| 318 |
-
summarize_classes=summarize_classes
|
| 319 |
-
)
|
| 320 |
-
end_time = time.time()
|
| 321 |
-
|
| 322 |
-
# Display summaries
|
| 323 |
-
st.success(f"Summarization completed in {end_time - start_time:.2f} seconds!")
|
| 324 |
-
|
| 325 |
-
# File summary
|
| 326 |
-
st.subheader("File Summary")
|
| 327 |
-
st.write(summaries["file_summary"])
|
| 328 |
-
|
| 329 |
-
# Function summaries
|
| 330 |
-
if summarize_functions and summaries["function_summaries"]:
|
| 331 |
-
st.subheader("Function Summaries")
|
| 332 |
-
for func_name, summary in summaries["function_summaries"].items():
|
| 333 |
-
with st.expander(f"Function: {func_name}"):
|
| 334 |
-
st.write(summary)
|
| 335 |
-
|
| 336 |
-
# Class summaries
|
| 337 |
-
if summarize_classes and summaries["class_summaries"]:
|
| 338 |
-
st.subheader("Class Summaries")
|
| 339 |
-
for class_name, summary in summaries["class_summaries"].items():
|
| 340 |
-
with st.expander(f"Class: {class_name}"):
|
| 341 |
-
st.write(summary)
|
| 342 |
-
|
| 343 |
st.markdown("---")
|
| 344 |
-
st.
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
-
if
|
| 360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from codet5_summarizer import CodeT5Summarizer, MODEL_OPTIONS
|
| 3 |
+
import textwrap
|
| 4 |
+
import os
|
| 5 |
+
import base64
|
| 6 |
|
| 7 |
+
st.set_page_config(page_title="Code Summarizer & Report Generator", layout="wide")
|
|
|
|
| 8 |
|
| 9 |
+
st.title("📄 Code Summarizer & Report Generator")
|
| 10 |
+
st.markdown("""
|
| 11 |
+
Upload a Python code file to get a high-level summary and a report structure with editable sections.
|
| 12 |
+
You can choose from various models including Mistral, CodeT5, and Gemini.
|
| 13 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Model selection
|
| 16 |
+
model_label = st.selectbox("Select Model", list(MODEL_OPTIONS.keys()), index=0)
|
| 17 |
+
summarizer = CodeT5Summarizer(model_name=MODEL_OPTIONS[model_label])
|
| 18 |
+
|
| 19 |
+
# Upload code file
|
| 20 |
+
uploaded_file = st.file_uploader("Upload a .py file", type="py")
|
| 21 |
+
if uploaded_file:
|
| 22 |
+
code = uploaded_file.read().decode("utf-8")
|
| 23 |
+
st.code(code, language="python")
|
| 24 |
+
|
| 25 |
+
st.markdown("---")
|
| 26 |
+
st.subheader("🔍 Generating Summary...")
|
| 27 |
+
|
| 28 |
+
if "Mistral" in model_label or "Gemini" in model_label:
|
| 29 |
+
summary = summarizer.summarize(code)
|
| 30 |
+
function_summaries = None
|
| 31 |
+
class_summaries = None
|
| 32 |
+
else:
|
| 33 |
+
results = summarizer.summarize_code(code)
|
| 34 |
+
summary = results["file_summary"]
|
| 35 |
+
function_summaries = results["function_summaries"]
|
| 36 |
+
class_summaries = results["class_summaries"]
|
| 37 |
+
|
| 38 |
+
st.text_area("Summary", summary, height=200)
|
| 39 |
+
|
| 40 |
+
if function_summaries:
|
| 41 |
+
st.subheader("🧩 Function Summaries")
|
| 42 |
+
for func, summ in function_summaries.items():
|
| 43 |
+
st.text_area(f"Function: {func}", summ, height=100)
|
| 44 |
+
|
| 45 |
+
if class_summaries:
|
| 46 |
+
st.subheader("🏗️ Class Summaries")
|
| 47 |
+
for cls, summ in class_summaries.items():
|
| 48 |
+
st.text_area(f"Class: {cls}", summ, height=100)
|
| 49 |
+
|
| 50 |
+
# Report generation section
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
st.markdown("---")
|
| 52 |
+
st.subheader("📘 Generate Report")
|
| 53 |
+
|
| 54 |
+
default_sections = [
|
| 55 |
+
"Abstract", "Introduction", "Literature Review", "Methodology",
|
| 56 |
+
"Modules", "Software & Hardware Requirements", "Architecture & UML Diagrams",
|
| 57 |
+
"References", "Conclusion"
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
sections = st.multiselect("Select Sections", default_sections, default=default_sections)
|
| 61 |
+
|
| 62 |
+
report = ""
|
| 63 |
+
for section in sections:
|
| 64 |
+
content = st.text_area(f"✏️ {section} Content", value=f"{section} description goes here...", height=150)
|
| 65 |
+
report += f"\n## {section}\n\n{textwrap.dedent(content)}\n"
|
| 66 |
+
|
| 67 |
+
# Export format
|
| 68 |
+
st.markdown("---")
|
| 69 |
+
st.subheader("📤 Export Report")
|
| 70 |
+
export_format = st.radio("Select Export Format", ["Markdown", "Text", "HTML"])
|
| 71 |
+
|
| 72 |
+
def generate_download_link(content, filename):
|
| 73 |
+
b64 = base64.b64encode(content.encode()).decode()
|
| 74 |
+
return f'<a href="data:file/txt;base64,{b64}" download="{filename}">📥 Download {filename}</a>'
|
| 75 |
|
| 76 |
+
if st.button("Generate Export File"):
|
| 77 |
+
filename = uploaded_file.name.replace(".py", "")
|
| 78 |
+
if export_format == "Markdown":
|
| 79 |
+
st.markdown(generate_download_link(report, f"{filename}_report.md"), unsafe_allow_html=True)
|
| 80 |
+
elif export_format == "Text":
|
| 81 |
+
st.markdown(generate_download_link(report, f"{filename}_report.txt"), unsafe_allow_html=True)
|
| 82 |
+
else:
|
| 83 |
+
html_content = f"<html><body>{report.replace('\n', '<br>')}</body></html>"
|
| 84 |
+
st.markdown(generate_download_link(html_content, f"{filename}_report.html"), unsafe_allow_html=True)
|
codet5_summarizer.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =============================
|
| 2 |
+
# 📄 codet5_summarizer.py (Updated)
|
| 3 |
+
# =============================
|
| 4 |
+
import torch
|
| 5 |
+
import re
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
| 7 |
+
import os
|
| 8 |
+
MODEL_OPTIONS = {
|
| 9 |
+
"CodeT5 Base (multi-sum)": "Salesforce/codet5-base-multi-sum",
|
| 10 |
+
"CodeT5 Base": "Salesforce/codet5-base",
|
| 11 |
+
"CodeT5 Small (Python-specific)": "stmnk/codet5-small-code-summarization-python",
|
| 12 |
+
"Gemini (describeai)": "describeai/gemini",
|
| 13 |
+
"Mistral 7B Instruct (v0.2)": "mistralai/Mistral-7B-Instruct-v0.2",
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
class CodeT5Summarizer:
|
| 17 |
+
def __init__(self, model_name=None):
|
| 18 |
+
model_name = model_name or MODEL_OPTIONS["CodeT5 Base (multi-sum)"]
|
| 19 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 20 |
+
hf_token = os.getenv('HF_TOKEN')
|
| 21 |
+
if hf_token is None:
|
| 22 |
+
raise ValueError("Hugging Face token must be set in the environment variable 'HF_TOKEN'.")
|
| 23 |
+
|
| 24 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
| 25 |
+
|
| 26 |
+
# Use causal model for decoder-only (e.g., Mistral), otherwise Seq2Seq
|
| 27 |
+
try:
|
| 28 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=hf_token).to(self.device)
|
| 29 |
+
except:
|
| 30 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token).to(self.device)
|
| 31 |
+
|
| 32 |
+
self.is_encoder_decoder = self.model.config.is_encoder_decoder if hasattr(self.model.config, "is_encoder_decoder") else False
|
| 33 |
+
|
| 34 |
+
def preprocess_code(self, code):
|
| 35 |
+
code = re.sub(r'\n\s*\n', '\n', code)
|
| 36 |
+
lines = code.split('\n')
|
| 37 |
+
clean = []
|
| 38 |
+
docstring = False
|
| 39 |
+
for line in lines:
|
| 40 |
+
if '"""' in line or "'''" in line:
|
| 41 |
+
docstring = not docstring
|
| 42 |
+
if docstring or not line.strip().startswith('#'):
|
| 43 |
+
clean.append(line)
|
| 44 |
+
return re.sub(r' +', ' ', '\n'.join(clean))
|
| 45 |
+
|
| 46 |
+
def extract_functions(self, code):
|
| 47 |
+
function_pattern = r'def\s+([a-zA-Z_][a-zA-Z0-9_]*)\s*\(.*?\).*?:'
|
| 48 |
+
function_matches = re.finditer(function_pattern, code, re.DOTALL)
|
| 49 |
+
functions = []
|
| 50 |
+
for match in function_matches:
|
| 51 |
+
start_pos = match.start()
|
| 52 |
+
function_name = match.group(1)
|
| 53 |
+
lines = code[start_pos:].split('\n')
|
| 54 |
+
body_start = 1
|
| 55 |
+
while body_start < len(lines) and not lines[body_start].strip():
|
| 56 |
+
body_start += 1
|
| 57 |
+
if body_start < len(lines):
|
| 58 |
+
body_indent = len(lines[body_start]) - len(lines[body_start].lstrip())
|
| 59 |
+
function_body = [lines[0]]
|
| 60 |
+
i = 1
|
| 61 |
+
while i < len(lines):
|
| 62 |
+
line = lines[i]
|
| 63 |
+
if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'):
|
| 64 |
+
break
|
| 65 |
+
function_body.append(line)
|
| 66 |
+
i += 1
|
| 67 |
+
function_code = '\n'.join(function_body)
|
| 68 |
+
functions.append((function_name, function_code))
|
| 69 |
+
|
| 70 |
+
# Class method detection
|
| 71 |
+
class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)'
|
| 72 |
+
class_matches = re.finditer(class_pattern, code, re.DOTALL)
|
| 73 |
+
for match in class_matches:
|
| 74 |
+
class_name = match.group(1)
|
| 75 |
+
start_pos = match.start()
|
| 76 |
+
class_code = code[start_pos:]
|
| 77 |
+
method_matches = re.finditer(function_pattern, class_code, re.DOTALL)
|
| 78 |
+
for method_match in method_matches:
|
| 79 |
+
if method_match.start() > 200: # Only near the top of the class
|
| 80 |
+
break
|
| 81 |
+
method_name = method_match.group(1)
|
| 82 |
+
method_start = method_match.start()
|
| 83 |
+
method_lines = class_code[method_start:].split('\n')
|
| 84 |
+
body_start = 1
|
| 85 |
+
while body_start < len(method_lines) and not method_lines[body_start].strip():
|
| 86 |
+
body_start += 1
|
| 87 |
+
if body_start < len(method_lines):
|
| 88 |
+
body_indent = len(method_lines[body_start]) - len(method_lines[body_start].lstrip())
|
| 89 |
+
method_body = [method_lines[0]]
|
| 90 |
+
i = 1
|
| 91 |
+
while i < len(method_lines):
|
| 92 |
+
line = method_lines[i]
|
| 93 |
+
if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'):
|
| 94 |
+
break
|
| 95 |
+
method_body.append(line)
|
| 96 |
+
i += 1
|
| 97 |
+
method_code = '\n'.join(method_body)
|
| 98 |
+
functions.append((f"{class_name}.{method_name}", method_code))
|
| 99 |
+
return functions
|
| 100 |
+
|
| 101 |
+
def extract_classes(self, code):
|
| 102 |
+
class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)'
|
| 103 |
+
class_matches = re.finditer(class_pattern, code, re.DOTALL)
|
| 104 |
+
classes = []
|
| 105 |
+
for match in class_matches:
|
| 106 |
+
class_name = match.group(1)
|
| 107 |
+
start_pos = match.start()
|
| 108 |
+
class_lines = code[start_pos:].split('\n')
|
| 109 |
+
body_start = 1
|
| 110 |
+
while body_start < len(class_lines) and not class_lines[body_start].strip():
|
| 111 |
+
body_start += 1
|
| 112 |
+
if body_start < len(class_lines):
|
| 113 |
+
body_indent = len(class_lines[body_start]) - len(class_lines[body_start].lstrip())
|
| 114 |
+
class_body = [class_lines[0]]
|
| 115 |
+
i = 1
|
| 116 |
+
while i < len(class_lines):
|
| 117 |
+
line = class_lines[i]
|
| 118 |
+
if line.strip() and (len(line) - len(line.lstrip())) < body_indent:
|
| 119 |
+
break
|
| 120 |
+
class_body.append(line)
|
| 121 |
+
i += 1
|
| 122 |
+
class_code = '\n'.join(class_body)
|
| 123 |
+
classes.append((class_name, class_code))
|
| 124 |
+
return classes
|
| 125 |
+
|
| 126 |
+
def summarize(self, code, max_length=512):
|
| 127 |
+
inputs = self.tokenizer(code, return_tensors="pt", truncation=True, max_length=512).to(self.device)
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
if self.is_encoder_decoder:
|
| 130 |
+
output = self.model.generate(
|
| 131 |
+
inputs["input_ids"],
|
| 132 |
+
attention_mask=inputs["attention_mask"], # Optional but good to include
|
| 133 |
+
|
| 134 |
+
max_new_tokens=max_length,
|
| 135 |
+
num_beams=4,
|
| 136 |
+
early_stopping=True
|
| 137 |
+
)
|
| 138 |
+
return self.tokenizer.decode(output[0], skip_special_tokens=True)
|
| 139 |
+
else:
|
| 140 |
+
input_ids = inputs["input_ids"]
|
| 141 |
+
attention_mask = inputs["attention_mask"]
|
| 142 |
+
|
| 143 |
+
output = self.model.generate(
|
| 144 |
+
input_ids=input_ids,
|
| 145 |
+
attention_mask=attention_mask, # ✅ Add this line
|
| 146 |
+
|
| 147 |
+
max_new_tokens=max_length,
|
| 148 |
+
do_sample=False,
|
| 149 |
+
num_beams=4,
|
| 150 |
+
early_stopping=True,
|
| 151 |
+
pad_token_id=self.tokenizer.eos_token_id
|
| 152 |
+
)
|
| 153 |
+
return self.tokenizer.decode(output[0], skip_special_tokens=True)
|
| 154 |
+
|
| 155 |
+
def summarize_code(self, code, summarize_functions=True, summarize_classes=True):
|
| 156 |
+
preprocessed_code = self.preprocess_code(code)
|
| 157 |
+
results = {
|
| 158 |
+
"file_summary": None,
|
| 159 |
+
"function_summaries": {},
|
| 160 |
+
"class_summaries": {}
|
| 161 |
+
}
|
| 162 |
+
try:
|
| 163 |
+
results["file_summary"] = self.summarize(preprocessed_code)
|
| 164 |
+
except Exception as e:
|
| 165 |
+
results["file_summary"] = f"Error generating file summary: {str(e)}"
|
| 166 |
+
|
| 167 |
+
if summarize_functions:
|
| 168 |
+
for function_name, function_code in self.extract_functions(preprocessed_code):
|
| 169 |
+
try:
|
| 170 |
+
summary = self.summarize(function_code)
|
| 171 |
+
results["function_summaries"][function_name] = summary
|
| 172 |
+
except Exception as e:
|
| 173 |
+
results["function_summaries"][function_name] = f"Error: {str(e)}"
|
| 174 |
+
|
| 175 |
+
if summarize_classes:
|
| 176 |
+
for class_name, class_code in self.extract_classes(preprocessed_code):
|
| 177 |
+
try:
|
| 178 |
+
summary = self.summarize(class_code)
|
| 179 |
+
results["class_summaries"][class_name] = summary
|
| 180 |
+
except Exception as e:
|
| 181 |
+
results["class_summaries"][class_name] = f"Error: {str(e)}"
|
| 182 |
+
|
| 183 |
+
return results
|