Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,962 Bytes
74c37c0 210796c 32cb5b7 210796c 74c37c0 2d198f5 a19a3df 90a01cc 00ae2e3 5997465 3ad2b3b 51db0fa f3f8f57 dbbdb8c cc07b2d 64d8c89 3a98b36 7217024 ec6e2b2 7217024 74c37c0 32cb5b7 74c37c0 210796c 32cb5b7 74c37c0 210796c b2bbee4 210796c 74c37c0 210796c b2bbee4 d2bda67 b2bbee4 210796c b2bbee4 32cb5b7 210796c 32cb5b7 74c37c0 32cb5b7 74c37c0 32cb5b7 210796c 32cb5b7 d2bda67 32cb5b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import argparse
import chromadb
from tqdm import tqdm # Optional: For progress bar
db_config = {
"youtube_db": {
"source_db_path": "../youtube_surfer_ai_agent/youtube_db",
"source_collection_name": "yt_metadata",
"destination_collection_name": "yt_metadata",
},
"divya_prabandham": {
"source_db_path": "../uveda_analyzer/chromadb_store",
"source_collection_name": "divya_prabandham",
"destination_collection_name": "divya_prabandham",
},
"divya_prabandham_taniyans": {
"source_db_path": "../uveda_analyzer/chromadb_store",
"source_collection_name": "divya_prabandham_taniyans",
"destination_collection_name": "divya_prabandham_taniyans",
},
"vishnu_sahasranamam": {
"source_db_path": "../vishnu_sahasranamam_ai/output/chroma_store",
"source_collection_name": "vishnu_sahasranamam",
"destination_collection_name": "vishnu_sahasranamam_openai",
},
"bhagavat_gita": {
"source_db_path": "../bhagavat_gita_chat/chromadb_store",
"source_collection_name": "bhagavat_gita",
"destination_collection_name": "bhagavat_gita_openai",
},
"pancha_sooktham": {
"source_db_path": "../sooktham_ai/chromadb_store",
"source_collection_name": "pancha_sooktham",
"destination_collection_name": "pancha_sooktham",
},
"taitriya_upanishad": {
"source_db_path": "../taitriya_upanishad_ai/chromadb_store",
"source_collection_name": "taitriya_upanishad",
"destination_collection_name": "taitriya_upanishad",
},
"shanthi_panchakam": {
"source_db_path": "../shanthi_panchakam_ai/chromadb_store",
"source_collection_name": "shanthi_panchakam",
"destination_collection_name": "shanthi_panchakam",
},
"taitriya_samhitha": {
"source_db_path": "../taitriya_samhitha_ai/chromadb_store",
"source_collection_name": "taitriya_samhitha",
"destination_collection_name": "taitriya_samhitha",
},
"taitriya_brahmanam": {
"source_db_path": "../taitriya_brahmanam_ai/chromadb_store",
"source_collection_name": "taitriya_brahmanam",
"destination_collection_name": "taitriya_brahmanam",
},
"katakam": {
"source_db_path": "../taitriya_brahmanam_ai/chromadb_store",
"source_collection_name": "katakam",
"destination_collection_name": "katakam",
},
"sri_stavam": {
"source_db_path": "../vedam_ai/chromadb-store",
"source_collection_name": "sri_stavam",
"destination_collection_name": "sri_stavam",
},
"taitriya_aranyakam": {
"source_db_path": "../taitriya_aranyakam_ai/chromadb_store",
"source_collection_name": "taitriya_aranyakam",
"destination_collection_name": "taitriya_aranyakam",
},
"brahma_sutra": {
"source_db_path": "../brahma_sutra_ai/chromadb_store",
"source_collection_name": "brahma_sutra",
"destination_collection_name": "brahma_sutra",
},
"valmiki_ramayanam": {
"source_db_path": "../valmiki_ramayanam_ai/chromadb_store",
"source_collection_name": "valmiki_ramayanam",
"destination_collection_name": "valmiki_ramayanam_openai",
},
"sri_vachana_bhushanam": {
"source_db_path": "../sri_vachana_bhushanam_ai/chromadb_store",
"source_collection_name": "sri_vachana_bhushanam",
"destination_collection_name": "sri_vachana_bhushanam",
},
}
parser = argparse.ArgumentParser(description="My app with database parameter")
parser.add_argument(
"--db",
type=str,
required=True,
choices=list(db_config.keys()),
help=f"Id of the database to use. allowed_values : {', '.join(db_config.keys())}",
)
args = parser.parse_args()
db_id = args.db
if db_id is None:
raise Exception(f"No db provided!")
if db_id not in db_config:
raise Exception(f"db with id {db_id} not found!")
# Connect to source and destination local persistent clients
source_client = chromadb.PersistentClient(path=db_config[db_id]["source_db_path"])
destination_client = chromadb.PersistentClient(path="./chromadb-store")
source_collection_name = db_config[db_id]["source_collection_name"]
destination_collection_name = db_config[db_id]["destination_collection_name"]
# Get the source collection
source_collection = source_client.get_collection(source_collection_name)
# Retrieve all data from the source collection
source_data = source_collection.get(include=["documents", "metadatas", "embeddings"])
# Create or get the destination collection
if destination_client.get_or_create_collection(destination_collection_name):
print("Deleting existing collection", destination_collection_name)
destination_client.delete_collection(destination_collection_name)
destination_collection = destination_client.get_or_create_collection(
destination_collection_name,
metadata=source_collection.metadata, # Copy metadata if needed
)
# Add data to the destination collection in batches
BATCH_SIZE = 500
total_records = len(source_data["ids"])
print(f"Copying {total_records} records in batches of {BATCH_SIZE}...")
for i in tqdm(range(0, total_records, BATCH_SIZE)):
batch_ids = source_data["ids"][i : i + BATCH_SIZE]
batch_docs = source_data["documents"][i : i + BATCH_SIZE]
batch_metas = source_data["metadatas"][i : i + BATCH_SIZE]
batch_embeds = (
source_data["embeddings"][i : i + BATCH_SIZE]
if "embeddings" in source_data and source_data["embeddings"] is not None
else None
)
destination_collection.add(
ids=batch_ids,
documents=batch_docs,
metadatas=batch_metas,
embeddings=batch_embeds,
)
print("✅ Collection copied successfully!")
print("Total records in source collection = ", source_collection.count())
print("Total records in destination collection = ", destination_collection.count())
|