Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload folder using huggingface_hub
Browse files- app.py +37 -14
- embeddings.py +27 -10
- modules/nodes/init.py +31 -9
- modules/nodes/state.py +2 -1
- pyproject.toml +1 -0
- requirements.txt +2 -0
- uv.lock +11 -0
app.py
CHANGED
|
@@ -25,6 +25,17 @@ logger.setLevel(logging.INFO)
|
|
| 25 |
|
| 26 |
graph = generate_graph()
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def init():
|
| 30 |
load_dotenv(override=True)
|
|
@@ -93,19 +104,29 @@ thinking_verbs = [
|
|
| 93 |
]
|
| 94 |
|
| 95 |
|
| 96 |
-
async def chat_wrapper(
|
|
|
|
|
|
|
| 97 |
if debug:
|
| 98 |
-
async for chunk in chat_streaming(
|
|
|
|
|
|
|
| 99 |
yield chunk
|
| 100 |
else:
|
| 101 |
-
response = chat(
|
|
|
|
|
|
|
| 102 |
yield response
|
| 103 |
|
| 104 |
|
| 105 |
-
def chat(debug_mode, message, history, thread_id):
|
| 106 |
config = {"configurable": {"thread_id": thread_id}}
|
| 107 |
response = graph.invoke(
|
| 108 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
config=config,
|
| 110 |
)
|
| 111 |
return response["messages"][-1].content
|
|
@@ -140,10 +161,13 @@ def get_args_for_toolcall(tool_calls_buffer: dict, tool_call_id: str):
|
|
| 140 |
)
|
| 141 |
|
| 142 |
|
| 143 |
-
async def chat_streaming(
|
|
|
|
|
|
|
| 144 |
state = {
|
| 145 |
"debug_mode": debug_mode,
|
| 146 |
"messages": (history or []) + [{"role": "user", "content": message}],
|
|
|
|
| 147 |
}
|
| 148 |
config = {"configurable": {"thread_id": thread_id}, "recursion_limit": 15}
|
| 149 |
start_time = time.time()
|
|
@@ -184,9 +208,7 @@ async def chat_streaming(debug_mode: bool, message, history, thread_id):
|
|
| 184 |
truncated = (full[:MAX_CONTENT] + "โฆ") if len(full) > MAX_CONTENT else full
|
| 185 |
|
| 186 |
def generate_processing_message():
|
| 187 |
-
return (
|
| 188 |
-
f"<div class='thinking-bubble'><em>๐ค{random.choice(thinking_verbs)} ...</em></div>"
|
| 189 |
-
)
|
| 190 |
|
| 191 |
if (
|
| 192 |
not isinstance(msg, ToolMessage)
|
|
@@ -197,9 +219,7 @@ async def chat_streaming(debug_mode: bool, message, history, thread_id):
|
|
| 197 |
if isinstance(msg, ToolMessage):
|
| 198 |
logger.debug("tool message = %s", msg)
|
| 199 |
|
| 200 |
-
html = (
|
| 201 |
-
f"<div class='thinking-bubble'><em>๐ค {msg.name} tool: {random.choice(thinking_verbs)} ...</em></div>"
|
| 202 |
-
)
|
| 203 |
yield f"### { ' โ '.join(node_tree)}\n{html}"
|
| 204 |
elif isinstance(msg, AIMessageChunk):
|
| 205 |
|
|
@@ -438,6 +458,9 @@ with gr.Blocks(
|
|
| 438 |
|
| 439 |
gr.Markdown(value="------")
|
| 440 |
debug_checkbox = gr.Checkbox(label="Debug (Streaming)", value=True)
|
|
|
|
|
|
|
|
|
|
| 441 |
chatbot = gr.Chatbot(
|
| 442 |
elem_id="chatbot",
|
| 443 |
avatar_images=("assets/avatar_user.png", "assets/adiyen_bot.png"),
|
|
@@ -453,9 +476,9 @@ with gr.Blocks(
|
|
| 453 |
chatInterface = gr.ChatInterface(
|
| 454 |
title="Sanatan-AI",
|
| 455 |
fn=chat_wrapper,
|
| 456 |
-
additional_inputs=[thread_id, debug_checkbox],
|
| 457 |
chatbot=chatbot,
|
| 458 |
textbox=message_textbox,
|
| 459 |
)
|
| 460 |
|
| 461 |
-
# app.launch()
|
|
|
|
| 25 |
|
| 26 |
graph = generate_graph()
|
| 27 |
|
| 28 |
+
import pycountry
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_all_languages():
|
| 32 |
+
"""
|
| 33 |
+
Returns a sorted list of all languages by their English names.
|
| 34 |
+
Uses ISO 639 data from pycountry.
|
| 35 |
+
"""
|
| 36 |
+
languages = [lang.name for lang in pycountry.languages if hasattr(lang, "name")]
|
| 37 |
+
return sorted(set(languages)) # remove duplicates and sort alphabetically
|
| 38 |
+
|
| 39 |
|
| 40 |
def init():
|
| 41 |
load_dotenv(override=True)
|
|
|
|
| 104 |
]
|
| 105 |
|
| 106 |
|
| 107 |
+
async def chat_wrapper(
|
| 108 |
+
message, history, thread_id, debug, preferred_language="English"
|
| 109 |
+
):
|
| 110 |
if debug:
|
| 111 |
+
async for chunk in chat_streaming(
|
| 112 |
+
debug, message, history, thread_id, preferred_language=preferred_language
|
| 113 |
+
):
|
| 114 |
yield chunk
|
| 115 |
else:
|
| 116 |
+
response = chat(
|
| 117 |
+
debug, message, history, thread_id, preferred_language=preferred_language
|
| 118 |
+
)
|
| 119 |
yield response
|
| 120 |
|
| 121 |
|
| 122 |
+
def chat(debug_mode, message, history, thread_id, preferred_language="English"):
|
| 123 |
config = {"configurable": {"thread_id": thread_id}}
|
| 124 |
response = graph.invoke(
|
| 125 |
+
{
|
| 126 |
+
"debug_mode": debug_mode,
|
| 127 |
+
"messages": [{"role": "user", "content": message}],
|
| 128 |
+
"language": preferred_language,
|
| 129 |
+
},
|
| 130 |
config=config,
|
| 131 |
)
|
| 132 |
return response["messages"][-1].content
|
|
|
|
| 161 |
)
|
| 162 |
|
| 163 |
|
| 164 |
+
async def chat_streaming(
|
| 165 |
+
debug_mode: bool, message, history, thread_id, preferred_language="English"
|
| 166 |
+
):
|
| 167 |
state = {
|
| 168 |
"debug_mode": debug_mode,
|
| 169 |
"messages": (history or []) + [{"role": "user", "content": message}],
|
| 170 |
+
"language": preferred_language,
|
| 171 |
}
|
| 172 |
config = {"configurable": {"thread_id": thread_id}, "recursion_limit": 15}
|
| 173 |
start_time = time.time()
|
|
|
|
| 208 |
truncated = (full[:MAX_CONTENT] + "โฆ") if len(full) > MAX_CONTENT else full
|
| 209 |
|
| 210 |
def generate_processing_message():
|
| 211 |
+
return f"<div class='thinking-bubble'><em>๐ค{random.choice(thinking_verbs)} ...</em></div>"
|
|
|
|
|
|
|
| 212 |
|
| 213 |
if (
|
| 214 |
not isinstance(msg, ToolMessage)
|
|
|
|
| 219 |
if isinstance(msg, ToolMessage):
|
| 220 |
logger.debug("tool message = %s", msg)
|
| 221 |
|
| 222 |
+
html = f"<div class='thinking-bubble'><em>๐ค {msg.name} tool: {random.choice(thinking_verbs)} ...</em></div>"
|
|
|
|
|
|
|
| 223 |
yield f"### { ' โ '.join(node_tree)}\n{html}"
|
| 224 |
elif isinstance(msg, AIMessageChunk):
|
| 225 |
|
|
|
|
| 458 |
|
| 459 |
gr.Markdown(value="------")
|
| 460 |
debug_checkbox = gr.Checkbox(label="Debug (Streaming)", value=True)
|
| 461 |
+
preferred_language = gr.Dropdown(
|
| 462 |
+
choices=get_all_languages(), value="English", label="Preferred Language"
|
| 463 |
+
)
|
| 464 |
chatbot = gr.Chatbot(
|
| 465 |
elem_id="chatbot",
|
| 466 |
avatar_images=("assets/avatar_user.png", "assets/adiyen_bot.png"),
|
|
|
|
| 476 |
chatInterface = gr.ChatInterface(
|
| 477 |
title="Sanatan-AI",
|
| 478 |
fn=chat_wrapper,
|
| 479 |
+
additional_inputs=[thread_id, debug_checkbox, preferred_language],
|
| 480 |
chatbot=chatbot,
|
| 481 |
textbox=message_textbox,
|
| 482 |
)
|
| 483 |
|
| 484 |
+
# app.launch()
|
embeddings.py
CHANGED
|
@@ -27,30 +27,47 @@ def chunk_text(text: str, max_tokens: int = 1000) -> list[str]:
|
|
| 27 |
tokens = tokenizer.encode(text)
|
| 28 |
return [tokenizer.decode(tokens[i:i+max_tokens]) for i in range(0, len(tokens), max_tokens)]
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def _get_openai_embedding(texts: list[str]) -> list[list[float]]:
|
| 31 |
"""Get embeddings for a list of texts. If a text is too long, chunk + average."""
|
| 32 |
final_embeddings = []
|
| 33 |
|
| 34 |
for text in texts:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Split into chunks if too long
|
| 36 |
if len(tokenizer.encode(text)) > 8192:
|
| 37 |
chunks = chunk_text(text)
|
| 38 |
else:
|
| 39 |
chunks = [text]
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
return final_embeddings
|
| 53 |
|
|
|
|
| 54 |
embedding_cache = {}
|
| 55 |
|
| 56 |
def get_embedding(texts: list[str], backend: Literal["hf","openai"] = "hf") -> list[list[float]]:
|
|
|
|
| 27 |
tokens = tokenizer.encode(text)
|
| 28 |
return [tokenizer.decode(tokens[i:i+max_tokens]) for i in range(0, len(tokens), max_tokens)]
|
| 29 |
|
| 30 |
+
import numpy as np
|
| 31 |
+
|
| 32 |
+
EMBED_DIM = 3072 # dimension of text-embedding-3-large
|
| 33 |
+
|
| 34 |
def _get_openai_embedding(texts: list[str]) -> list[list[float]]:
|
| 35 |
"""Get embeddings for a list of texts. If a text is too long, chunk + average."""
|
| 36 |
final_embeddings = []
|
| 37 |
|
| 38 |
for text in texts:
|
| 39 |
+
if not text or not isinstance(text, str) or not text.strip():
|
| 40 |
+
# fallback: skip or append zero vector
|
| 41 |
+
final_embeddings.append([0.0] * EMBED_DIM)
|
| 42 |
+
continue
|
| 43 |
+
|
| 44 |
# Split into chunks if too long
|
| 45 |
if len(tokenizer.encode(text)) > 8192:
|
| 46 |
chunks = chunk_text(text)
|
| 47 |
else:
|
| 48 |
chunks = [text]
|
| 49 |
|
| 50 |
+
# Clean chunks
|
| 51 |
+
clean_chunks = [c.strip() for c in chunks if isinstance(c, str) and c.strip()]
|
| 52 |
+
if not clean_chunks:
|
| 53 |
+
final_embeddings.append([0.0] * EMBED_DIM)
|
| 54 |
+
continue
|
| 55 |
+
|
| 56 |
+
try:
|
| 57 |
+
response = client.embeddings.create(
|
| 58 |
+
model="text-embedding-3-large",
|
| 59 |
+
input=clean_chunks
|
| 60 |
+
)
|
| 61 |
+
chunk_embeddings = [np.array(d.embedding) for d in response.data]
|
| 62 |
+
avg_embedding = np.mean(chunk_embeddings, axis=0)
|
| 63 |
+
final_embeddings.append(avg_embedding.tolist())
|
| 64 |
+
except Exception as e:
|
| 65 |
+
print(f"Embedding failed for text[:100]={text[:100]!r}, error={e}")
|
| 66 |
+
final_embeddings.append([0.0] * EMBED_DIM) # fallback
|
| 67 |
|
| 68 |
return final_embeddings
|
| 69 |
|
| 70 |
+
|
| 71 |
embedding_cache = {}
|
| 72 |
|
| 73 |
def get_embedding(texts: list[str], backend: Literal["hf","openai"] = "hf") -> list[list[float]]:
|
modules/nodes/init.py
CHANGED
|
@@ -6,7 +6,11 @@ from modules.nodes.state import ChatState
|
|
| 6 |
|
| 7 |
def init_system_prompt_node(state: ChatState) -> ChatState:
|
| 8 |
messages = state["messages"] or []
|
| 9 |
-
initialized = state["initialized"] if "initialized"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Check if system prompts were already added
|
| 12 |
if not initialized:
|
|
@@ -76,7 +80,7 @@ Example user queries and tool usage:
|
|
| 76 |
"""
|
| 77 |
),
|
| 78 |
SystemMessage(
|
| 79 |
-
content="""You are a knowledgeable assistant on the scripture *{collection_name}*, well-versed in **Sanskrit** , **
|
| 80 |
You must answer the question using **only** the content from *{collection_name}* provided in the context below.
|
| 81 |
- Do **not** bring in information from **any other scripture or source**, or from prior knowledge, even if the answer seems obvious or well-known.
|
| 82 |
- Do **not** quote any Sanskrit/Tamil verses unless they appear **explicitly** in the provided context.
|
|
@@ -88,7 +92,8 @@ If the answer asks for translation to another language of their choice and you a
|
|
| 88 |
If the answer WAS indeed found in the context, use the following response format (in Markdown) othereise clearly state **"I do not have enough information from the {collection_name} to answer this. I searched using {search_methodology}. Do you want me try to another search like {alternative_searchmethod}?"**
|
| 89 |
|
| 90 |
### ๐งพ Answer
|
| 91 |
-
- Present a brief summary of your response in concise **
|
|
|
|
| 92 |
|
| 93 |
The following format should be used to show only the most relevant match. Do not show all matches at once.
|
| 94 |
|
|
@@ -98,6 +103,9 @@ The following format should be used to show only the most relevant match. Do not
|
|
| 98 |
### ๐ฎ Chapter Title(s)
|
| 99 |
- Mention the chapter(s) from which the references were taken. Use the field *title* here from the context if available. For example `TVM 1.8.3`
|
| 100 |
|
|
|
|
|
|
|
|
|
|
| 101 |
### ๐ฎ Verse Number(s)
|
| 102 |
- Mention the *verse number* from which the references were taken.
|
| 103 |
|
|
@@ -117,16 +125,16 @@ The following format should be used to show only the most relevant match. Do not
|
|
| 117 |
- Do not translate, transliterate, or interpret.
|
| 118 |
- Do not hallucinate or generate new verses.
|
| 119 |
- Output should only be the **cleaned, original verses**.
|
| 120 |
-
- The output in this section **MUST** be in native script not
|
| 121 |
> If you are unsure about a character, leave it as it is rather than guessing.
|
| 122 |
|
| 123 |
|
| 124 |
-
### ๐
|
| 125 |
-
-
|
| 126 |
-
-
|
| 127 |
|
| 128 |
-
### ๐
|
| 129 |
-
- Provide the **
|
| 130 |
- Again, follow the **same order**.
|
| 131 |
- Do **not** repeat the original verse here โ just the translation.
|
| 132 |
|
|
@@ -155,6 +163,20 @@ Respond in **Markdown** format only. Ensure native Sanskrit/Tamil verses are alw
|
|
| 155 |
),
|
| 156 |
]
|
| 157 |
state["initialized"] = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
state["tool_calls"] = 0
|
| 159 |
state["seen_tool_calls"] = set()
|
| 160 |
state["skip_tool"] = False
|
|
|
|
| 6 |
|
| 7 |
def init_system_prompt_node(state: ChatState) -> ChatState:
|
| 8 |
messages = state["messages"] or []
|
| 9 |
+
initialized = state["initialized"] if "initialized" in state else False
|
| 10 |
+
|
| 11 |
+
if "language" not in state:
|
| 12 |
+
# Set default language
|
| 13 |
+
state["language"] = "English"
|
| 14 |
|
| 15 |
# Check if system prompts were already added
|
| 16 |
if not initialized:
|
|
|
|
| 80 |
"""
|
| 81 |
),
|
| 82 |
SystemMessage(
|
| 83 |
+
content="""You are a knowledgeable assistant on the scripture *{collection_name}*, well-versed in **Sanskrit** , **{user_preferred_language}** and **Tamil**.
|
| 84 |
You must answer the question using **only** the content from *{collection_name}* provided in the context below.
|
| 85 |
- Do **not** bring in information from **any other scripture or source**, or from prior knowledge, even if the answer seems obvious or well-known.
|
| 86 |
- Do **not** quote any Sanskrit/Tamil verses unless they appear **explicitly** in the provided context.
|
|
|
|
| 92 |
If the answer WAS indeed found in the context, use the following response format (in Markdown) othereise clearly state **"I do not have enough information from the {collection_name} to answer this. I searched using {search_methodology}. Do you want me try to another search like {alternative_searchmethod}?"**
|
| 93 |
|
| 94 |
### ๐งพ Answer
|
| 95 |
+
- Present a brief summary of your response in concise **{user_preferred_language}**. Mention only the scripture(s), chapter(s) and verse number(s) available if multiple matches are available.
|
| 96 |
+
- This needs to begin with `author` says.
|
| 97 |
|
| 98 |
The following format should be used to show only the most relevant match. Do not show all matches at once.
|
| 99 |
|
|
|
|
| 103 |
### ๐ฎ Chapter Title(s)
|
| 104 |
- Mention the chapter(s) from which the references were taken. Use the field *title* here from the context if available. For example `TVM 1.8.3`
|
| 105 |
|
| 106 |
+
### ๐ฎ Author(s)
|
| 107 |
+
- Mention the name of the Author. In the case of divya_prabandham, it is the `azhwar_name`
|
| 108 |
+
|
| 109 |
### ๐ฎ Verse Number(s)
|
| 110 |
- Mention the *verse number* from which the references were taken.
|
| 111 |
|
|
|
|
| 125 |
- Do not translate, transliterate, or interpret.
|
| 126 |
- Do not hallucinate or generate new verses.
|
| 127 |
- Output should only be the **cleaned, original verses**.
|
| 128 |
+
- The output in this section **MUST** be in native script not {user_preferred_language} or transliterated {user_preferred_language}.
|
| 129 |
> If you are unsure about a character, leave it as it is rather than guessing.
|
| 130 |
|
| 131 |
|
| 132 |
+
### ๐ {user_preferred_language} Transliteration(s)
|
| 133 |
+
- If `{user_preferred_language}` is the SAME as the native verse language, **omit this entire section completely** (do not output even the heading).
|
| 134 |
+
- Otherwise, provide the transliterations in {user_preferred_language}, matching the order of verses above.
|
| 135 |
|
| 136 |
+
### ๐ {user_preferred_language} Translation(s)
|
| 137 |
+
- Provide the **{user_preferred_language} meaning** for each verse listed above.
|
| 138 |
- Again, follow the **same order**.
|
| 139 |
- Do **not** repeat the original verse here โ just the translation.
|
| 140 |
|
|
|
|
| 163 |
),
|
| 164 |
]
|
| 165 |
state["initialized"] = True
|
| 166 |
+
|
| 167 |
+
state["messages"].append(
|
| 168 |
+
SystemMessage(
|
| 169 |
+
content=(
|
| 170 |
+
f"Note: `user_preferred_language` is {state['language']}. "
|
| 171 |
+
f"Carefully translate all other sections (including the section headings) in the response "
|
| 172 |
+
f"**except the Native verses** to {state['language']}. "
|
| 173 |
+
f"While translating, meticulously correct any spelling mistakes, typos, conversion errors, "
|
| 174 |
+
f"and remove any untranslated words or foreign characters. "
|
| 175 |
+
f"Ensure the output text is **fully natural, grammatically correct, and orthographically valid** "
|
| 176 |
+
f"in {state['language']}."
|
| 177 |
+
)
|
| 178 |
+
)
|
| 179 |
+
)
|
| 180 |
state["tool_calls"] = 0
|
| 181 |
state["seen_tool_calls"] = set()
|
| 182 |
state["skip_tool"] = False
|
modules/nodes/state.py
CHANGED
|
@@ -9,4 +9,5 @@ class ChatState(TypedDict):
|
|
| 9 |
tool_calls: int
|
| 10 |
seen_tool_calls: set[tuple[str, str]] # (tool_name, params_hash)
|
| 11 |
skip_tool: bool
|
| 12 |
-
initialized : bool
|
|
|
|
|
|
| 9 |
tool_calls: int
|
| 10 |
seen_tool_calls: set[tuple[str, str]] # (tool_name, params_hash)
|
| 11 |
skip_tool: bool
|
| 12 |
+
initialized : bool
|
| 13 |
+
language : str
|
pyproject.toml
CHANGED
|
@@ -17,5 +17,6 @@ dependencies = [
|
|
| 17 |
"langchain-openai>=0.3.28",
|
| 18 |
"langgraph>=0.6.2",
|
| 19 |
"oauth2client>=4.1.3",
|
|
|
|
| 20 |
"sentence-transformers>=5.0.0",
|
| 21 |
]
|
|
|
|
| 17 |
"langchain-openai>=0.3.28",
|
| 18 |
"langgraph>=0.6.2",
|
| 19 |
"oauth2client>=4.1.3",
|
| 20 |
+
"pycountry>=24.6.1",
|
| 21 |
"sentence-transformers>=5.0.0",
|
| 22 |
]
|
requirements.txt
CHANGED
|
@@ -332,6 +332,8 @@ pyasn1-modules==0.4.2
|
|
| 332 |
# oauth2client
|
| 333 |
pybase64==1.4.2
|
| 334 |
# via chromadb
|
|
|
|
|
|
|
| 335 |
pydantic==2.11.7
|
| 336 |
# via
|
| 337 |
# chromadb
|
|
|
|
| 332 |
# oauth2client
|
| 333 |
pybase64==1.4.2
|
| 334 |
# via chromadb
|
| 335 |
+
pycountry==24.6.1
|
| 336 |
+
# via sanatan-ai (pyproject.toml)
|
| 337 |
pydantic==2.11.7
|
| 338 |
# via
|
| 339 |
# chromadb
|
uv.lock
CHANGED
|
@@ -2273,6 +2273,15 @@ wheels = [
|
|
| 2273 |
{ url = "https://files.pythonhosted.org/packages/3c/52/5600104ef7b85f89fb8ec54f73504ead3f6f0294027e08d281f3cafb5c1a/pybase64-1.4.2-cp314-cp314t-win_arm64.whl", hash = "sha256:f25140496b02db0e7401567cd869fb13b4c8118bf5c2428592ec339987146d8b", size = 31600, upload-time = "2025-07-27T13:05:52.24Z" },
|
| 2274 |
]
|
| 2275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2276 |
[[package]]
|
| 2277 |
name = "pycparser"
|
| 2278 |
version = "2.22"
|
|
@@ -2750,6 +2759,7 @@ dependencies = [
|
|
| 2750 |
{ name = "langchain-openai" },
|
| 2751 |
{ name = "langgraph" },
|
| 2752 |
{ name = "oauth2client" },
|
|
|
|
| 2753 |
{ name = "sentence-transformers" },
|
| 2754 |
]
|
| 2755 |
|
|
@@ -2767,6 +2777,7 @@ requires-dist = [
|
|
| 2767 |
{ name = "langchain-openai", specifier = ">=0.3.28" },
|
| 2768 |
{ name = "langgraph", specifier = ">=0.6.2" },
|
| 2769 |
{ name = "oauth2client", specifier = ">=4.1.3" },
|
|
|
|
| 2770 |
{ name = "sentence-transformers", specifier = ">=5.0.0" },
|
| 2771 |
]
|
| 2772 |
|
|
|
|
| 2273 |
{ url = "https://files.pythonhosted.org/packages/3c/52/5600104ef7b85f89fb8ec54f73504ead3f6f0294027e08d281f3cafb5c1a/pybase64-1.4.2-cp314-cp314t-win_arm64.whl", hash = "sha256:f25140496b02db0e7401567cd869fb13b4c8118bf5c2428592ec339987146d8b", size = 31600, upload-time = "2025-07-27T13:05:52.24Z" },
|
| 2274 |
]
|
| 2275 |
|
| 2276 |
+
[[package]]
|
| 2277 |
+
name = "pycountry"
|
| 2278 |
+
version = "24.6.1"
|
| 2279 |
+
source = { registry = "https://pypi.org/simple" }
|
| 2280 |
+
sdist = { url = "https://files.pythonhosted.org/packages/76/57/c389fa68c50590881a75b7883eeb3dc15e9e73a0fdc001cdd45c13290c92/pycountry-24.6.1.tar.gz", hash = "sha256:b61b3faccea67f87d10c1f2b0fc0be714409e8fcdcc1315613174f6466c10221", size = 6043910, upload-time = "2024-06-01T04:12:15.05Z" }
|
| 2281 |
+
wheels = [
|
| 2282 |
+
{ url = "https://files.pythonhosted.org/packages/b1/ec/1fb891d8a2660716aadb2143235481d15ed1cbfe3ad669194690b0604492/pycountry-24.6.1-py3-none-any.whl", hash = "sha256:f1a4fb391cd7214f8eefd39556d740adcc233c778a27f8942c8dca351d6ce06f", size = 6335189, upload-time = "2024-06-01T04:11:49.711Z" },
|
| 2283 |
+
]
|
| 2284 |
+
|
| 2285 |
[[package]]
|
| 2286 |
name = "pycparser"
|
| 2287 |
version = "2.22"
|
|
|
|
| 2759 |
{ name = "langchain-openai" },
|
| 2760 |
{ name = "langgraph" },
|
| 2761 |
{ name = "oauth2client" },
|
| 2762 |
+
{ name = "pycountry" },
|
| 2763 |
{ name = "sentence-transformers" },
|
| 2764 |
]
|
| 2765 |
|
|
|
|
| 2777 |
{ name = "langchain-openai", specifier = ">=0.3.28" },
|
| 2778 |
{ name = "langgraph", specifier = ">=0.6.2" },
|
| 2779 |
{ name = "oauth2client", specifier = ">=4.1.3" },
|
| 2780 |
+
{ name = "pycountry", specifier = ">=24.6.1" },
|
| 2781 |
{ name = "sentence-transformers", specifier = ">=5.0.0" },
|
| 2782 |
]
|
| 2783 |
|