Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +28 -28
- README.md +1 -0
- app.py +74 -74
- config.py +108 -108
- db.py +35 -35
- drive_downloader.py +44 -44
- embeddings.py +9 -9
- graph_helper.py +103 -103
- push_notifications_helper.py +24 -24
- sanatan_assistant.py +98 -98
- serperdev_helper.py +13 -13
- tools.py +28 -28
.github/workflows/update_space.yml
CHANGED
|
@@ -1,28 +1,28 @@
|
|
| 1 |
-
name: Run Python script
|
| 2 |
-
|
| 3 |
-
on:
|
| 4 |
-
push:
|
| 5 |
-
branches:
|
| 6 |
-
- main
|
| 7 |
-
|
| 8 |
-
jobs:
|
| 9 |
-
build:
|
| 10 |
-
runs-on: ubuntu-latest
|
| 11 |
-
|
| 12 |
-
steps:
|
| 13 |
-
- name: Checkout
|
| 14 |
-
uses: actions/checkout@v2
|
| 15 |
-
|
| 16 |
-
- name: Set up Python
|
| 17 |
-
uses: actions/setup-python@v2
|
| 18 |
-
with:
|
| 19 |
-
python-version: '3.9'
|
| 20 |
-
|
| 21 |
-
- name: Install Gradio
|
| 22 |
-
run: python -m pip install gradio
|
| 23 |
-
|
| 24 |
-
- name: Log in to Hugging Face
|
| 25 |
-
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
| 26 |
-
|
| 27 |
-
- name: Deploy to Spaces
|
| 28 |
-
run: gradio deploy
|
|
|
|
| 1 |
+
name: Run Python script
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
|
| 8 |
+
jobs:
|
| 9 |
+
build:
|
| 10 |
+
runs-on: ubuntu-latest
|
| 11 |
+
|
| 12 |
+
steps:
|
| 13 |
+
- name: Checkout
|
| 14 |
+
uses: actions/checkout@v2
|
| 15 |
+
|
| 16 |
+
- name: Set up Python
|
| 17 |
+
uses: actions/setup-python@v2
|
| 18 |
+
with:
|
| 19 |
+
python-version: '3.9'
|
| 20 |
+
|
| 21 |
+
- name: Install Gradio
|
| 22 |
+
run: python -m pip install gradio
|
| 23 |
+
|
| 24 |
+
- name: Log in to Hugging Face
|
| 25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
| 26 |
+
|
| 27 |
+
- name: Deploy to Spaces
|
| 28 |
+
run: gradio deploy
|
README.md
CHANGED
|
@@ -3,4 +3,5 @@ title: sanatan_ai
|
|
| 3 |
app_file: app.py
|
| 4 |
sdk: gradio
|
| 5 |
sdk_version: 5.38.0
|
|
|
|
| 6 |
---
|
|
|
|
| 3 |
app_file: app.py
|
| 4 |
sdk: gradio
|
| 5 |
sdk_version: 5.38.0
|
| 6 |
+
python_version: 3.12
|
| 7 |
---
|
app.py
CHANGED
|
@@ -1,74 +1,74 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from config import SanatanConfig
|
| 4 |
-
from drive_downloader import ZipDownloader
|
| 5 |
-
from graph_helper import generate_graph
|
| 6 |
-
import uuid
|
| 7 |
-
import logging
|
| 8 |
-
from dotenv import load_dotenv
|
| 9 |
-
|
| 10 |
-
logging.basicConfig()
|
| 11 |
-
logger = logging.getLogger()
|
| 12 |
-
logger.setLevel(logging.INFO)
|
| 13 |
-
|
| 14 |
-
graph = generate_graph()
|
| 15 |
-
|
| 16 |
-
def init():
|
| 17 |
-
load_dotenv(override=True)
|
| 18 |
-
|
| 19 |
-
downloader = ZipDownloader(
|
| 20 |
-
service_account_json=os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
|
| 21 |
-
)
|
| 22 |
-
# 1. Download zip file
|
| 23 |
-
zip_path = downloader.download_zip_from_drive(
|
| 24 |
-
file_id=os.getenv("CHROMADB_FILE_ID"),
|
| 25 |
-
output_path=SanatanConfig.dbStorePath,
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
# 2. Extract it
|
| 29 |
-
downloader.unzip(zip_path, extract_to="./")
|
| 30 |
-
|
| 31 |
-
def init_session():
|
| 32 |
-
# Generate a unique ID per browser session
|
| 33 |
-
return str(uuid.uuid4())
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def chat(message, history, thread_id):
|
| 37 |
-
print("received chat message for thread:", thread_id)
|
| 38 |
-
config = {"configurable": {"thread_id": thread_id}}
|
| 39 |
-
response = graph.invoke(
|
| 40 |
-
{"messages": [{"role": "user", "content": message}]}, config=config
|
| 41 |
-
)
|
| 42 |
-
return response["messages"][-1].content
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
thread_id = gr.State(init_session)
|
| 46 |
-
supported_scriptures = "\n - ".join(
|
| 47 |
-
[scripture["title"] for scripture in SanatanConfig.scriptures]
|
| 48 |
-
)
|
| 49 |
-
intro_messages = [
|
| 50 |
-
{"role" : "assistant","content" : f"Namaskaram! I can assist with the following scriptures: \n - {supported_scriptures}"},
|
| 51 |
-
{"role" : "assistant","content" : """
|
| 52 |
-
#### You can ask me questions like:
|
| 53 |
-
- How do all scriptures describe the form of Vishnu?
|
| 54 |
-
- What did Krishna teach in Gita?
|
| 55 |
-
- How did Arjun react on seeing the Vishwarupa form of Krishna?
|
| 56 |
-
- Give some names of Vishnu from Sahasranamam.
|
| 57 |
-
"""}
|
| 58 |
-
]
|
| 59 |
-
chatbot = gr.Chatbot(
|
| 60 |
-
elem_id="chatbot",
|
| 61 |
-
avatar_images=("assets/avatar_user.png", "assets/adiyen_bot.png"),
|
| 62 |
-
value=intro_messages,
|
| 63 |
-
label="Sanatan-Bot",
|
| 64 |
-
show_copy_button=True,
|
| 65 |
-
show_copy_all_button=True,
|
| 66 |
-
type="messages",
|
| 67 |
-
height=800
|
| 68 |
-
)
|
| 69 |
-
chatInterface = gr.ChatInterface(title="Sanatan-AI",
|
| 70 |
-
fn=chat, additional_inputs=[thread_id], chatbot=chatbot
|
| 71 |
-
)
|
| 72 |
-
# initializze database
|
| 73 |
-
init()
|
| 74 |
-
chatInterface.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from config import SanatanConfig
|
| 4 |
+
from drive_downloader import ZipDownloader
|
| 5 |
+
from graph_helper import generate_graph
|
| 6 |
+
import uuid
|
| 7 |
+
import logging
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
|
| 10 |
+
logging.basicConfig()
|
| 11 |
+
logger = logging.getLogger()
|
| 12 |
+
logger.setLevel(logging.INFO)
|
| 13 |
+
|
| 14 |
+
graph = generate_graph()
|
| 15 |
+
|
| 16 |
+
def init():
|
| 17 |
+
load_dotenv(override=True)
|
| 18 |
+
|
| 19 |
+
downloader = ZipDownloader(
|
| 20 |
+
service_account_json=os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
|
| 21 |
+
)
|
| 22 |
+
# 1. Download zip file
|
| 23 |
+
zip_path = downloader.download_zip_from_drive(
|
| 24 |
+
file_id=os.getenv("CHROMADB_FILE_ID"),
|
| 25 |
+
output_path=SanatanConfig.dbStorePath,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# 2. Extract it
|
| 29 |
+
downloader.unzip(zip_path, extract_to="./")
|
| 30 |
+
|
| 31 |
+
def init_session():
|
| 32 |
+
# Generate a unique ID per browser session
|
| 33 |
+
return str(uuid.uuid4())
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def chat(message, history, thread_id):
|
| 37 |
+
print("received chat message for thread:", thread_id)
|
| 38 |
+
config = {"configurable": {"thread_id": thread_id}}
|
| 39 |
+
response = graph.invoke(
|
| 40 |
+
{"messages": [{"role": "user", "content": message}]}, config=config
|
| 41 |
+
)
|
| 42 |
+
return response["messages"][-1].content
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
thread_id = gr.State(init_session)
|
| 46 |
+
supported_scriptures = "\n - ".join(
|
| 47 |
+
[scripture["title"] for scripture in SanatanConfig.scriptures]
|
| 48 |
+
)
|
| 49 |
+
intro_messages = [
|
| 50 |
+
{"role" : "assistant","content" : f"Namaskaram! I can assist with the following scriptures: \n - {supported_scriptures}"},
|
| 51 |
+
{"role" : "assistant","content" : """
|
| 52 |
+
#### You can ask me questions like:
|
| 53 |
+
- How do all scriptures describe the form of Vishnu?
|
| 54 |
+
- What did Krishna teach in Gita?
|
| 55 |
+
- How did Arjun react on seeing the Vishwarupa form of Krishna?
|
| 56 |
+
- Give some names of Vishnu from Sahasranamam.
|
| 57 |
+
"""}
|
| 58 |
+
]
|
| 59 |
+
chatbot = gr.Chatbot(
|
| 60 |
+
elem_id="chatbot",
|
| 61 |
+
avatar_images=("assets/avatar_user.png", "assets/adiyen_bot.png"),
|
| 62 |
+
value=intro_messages,
|
| 63 |
+
label="Sanatan-Bot",
|
| 64 |
+
show_copy_button=True,
|
| 65 |
+
show_copy_all_button=True,
|
| 66 |
+
type="messages",
|
| 67 |
+
height=800
|
| 68 |
+
)
|
| 69 |
+
chatInterface = gr.ChatInterface(title="Sanatan-AI",
|
| 70 |
+
fn=chat, additional_inputs=[thread_id], chatbot=chatbot
|
| 71 |
+
)
|
| 72 |
+
# initializze database
|
| 73 |
+
init()
|
| 74 |
+
chatInterface.launch()
|
config.py
CHANGED
|
@@ -1,108 +1,108 @@
|
|
| 1 |
-
class SanatanConfig:
|
| 2 |
-
# shuklaYajurVedamPdfPath: str = "./data/shukla-yajur-veda.pdf"
|
| 3 |
-
# shuklaYajurVedamSmallPdfPath: str = "./data/shukla-yajur-veda-small.pdf"
|
| 4 |
-
# vishnuPuranamPdfPath = "./data/vishnu_puranam.pdf"
|
| 5 |
-
# datastores = [{"name": "sanskrit_001", "dbStorePath": "./chromadb-store"}, {"name": "nalayiram", "dbStorePath": "./chromadb-store-4000"}]
|
| 6 |
-
dbStorePath: str = "./chromadb-store"
|
| 7 |
-
# shuklaYajurVedamCollectionName: str = "shukla_yajur_vedam"
|
| 8 |
-
# vishnuPuranamCollectionName: str = "vishnu_puranam"
|
| 9 |
-
# shuklaYajurVedamOutputDir = "./output/shukla_yajur_vedam"
|
| 10 |
-
# vishnuPuranamOutputDir = "./output/vishnu_puranam"
|
| 11 |
-
scriptures = [
|
| 12 |
-
{
|
| 13 |
-
"name": "vishnu_puranam",
|
| 14 |
-
"title": "Sri Vishnu Puranam",
|
| 15 |
-
"output_dir": "./output/vishnu_puranam",
|
| 16 |
-
"collection_name": "vishnu_puranam",
|
| 17 |
-
"pdf_path": "./data/vishnu_puranam.pdf",
|
| 18 |
-
"language": "san+eng",
|
| 19 |
-
"example_labels": [
|
| 20 |
-
"Vishnu's form",
|
| 21 |
-
"About the five elements",
|
| 22 |
-
"About Garuda",
|
| 23 |
-
"Weapons of Vishnu",
|
| 24 |
-
],
|
| 25 |
-
"examples": [
|
| 26 |
-
"describe Vishnu's form",
|
| 27 |
-
"five elements and their significance",
|
| 28 |
-
"What is the significance of Garuda? Show some verses that describe him.",
|
| 29 |
-
"What weapons does Vishnu hold?",
|
| 30 |
-
],
|
| 31 |
-
},
|
| 32 |
-
{
|
| 33 |
-
"name": "shukla_yajur_vedam",
|
| 34 |
-
"title": "Shukla Yajur Vedam",
|
| 35 |
-
"output_dir": "./output/shukla_yajur_vedam",
|
| 36 |
-
"collection_name": "shukla_yajur_vedam",
|
| 37 |
-
"pdf_path": "./data/shukla-yajur-veda.pdf",
|
| 38 |
-
"language": "san+eng",
|
| 39 |
-
"example_labels": [
|
| 40 |
-
"About Vedam",
|
| 41 |
-
"About the five elements",
|
| 42 |
-
"About Brahma",
|
| 43 |
-
],
|
| 44 |
-
"examples": [
|
| 45 |
-
"Gist of Shukla Yajur Vedam. Give me some sanskrit verses.",
|
| 46 |
-
"What is the significance of fire and water. show some sanskrit verses",
|
| 47 |
-
"Brahma",
|
| 48 |
-
],
|
| 49 |
-
},
|
| 50 |
-
{
|
| 51 |
-
"name": "bhagavat_gita",
|
| 52 |
-
"title": "Bhagavat Gita",
|
| 53 |
-
"output_dir": "./output/bhagavat_gita",
|
| 54 |
-
"collection_name": "bhagavat_gita",
|
| 55 |
-
"pdf_path": "./data/bhagavat_gita.pdf",
|
| 56 |
-
"language": "san+eng",
|
| 57 |
-
"example_labels": [
|
| 58 |
-
"About Arjuna",
|
| 59 |
-
"About Karma",
|
| 60 |
-
"About birth and death",
|
| 61 |
-
"About the battle field",
|
| 62 |
-
"About Krishna's form",
|
| 63 |
-
],
|
| 64 |
-
"examples": [
|
| 65 |
-
"Show some verses where Krishna advises Arjuna",
|
| 66 |
-
"What does Krishna say about Karma",
|
| 67 |
-
"What does Krishna say about birth and death",
|
| 68 |
-
"describe the battle field",
|
| 69 |
-
"Vishwarupa",
|
| 70 |
-
],
|
| 71 |
-
},
|
| 72 |
-
{
|
| 73 |
-
"name": "valmiki_ramayanam",
|
| 74 |
-
"title": "Valmiki Ramayanam",
|
| 75 |
-
"output_dir": "./output/valmiki_ramayanam",
|
| 76 |
-
"collection_name": "valmiki_ramayanam",
|
| 77 |
-
"pdf_path": "./data/valmiki_ramayanam.pdf",
|
| 78 |
-
"language": "san+eng",
|
| 79 |
-
"example_labels": [
|
| 80 |
-
"About Jatayu",
|
| 81 |
-
"About Hanuman",
|
| 82 |
-
"About Vali",
|
| 83 |
-
"About Sita",
|
| 84 |
-
"About Ravana",
|
| 85 |
-
],
|
| 86 |
-
"examples": [
|
| 87 |
-
"What is the significance of Jatayu? show some sanskrit verses to support the argument",
|
| 88 |
-
"Show some verses where Hanuman is mentioned",
|
| 89 |
-
"How did Rama kill Vali",
|
| 90 |
-
"How was Sita abducted",
|
| 91 |
-
"How did Rama kill Ravana?",
|
| 92 |
-
],
|
| 93 |
-
},
|
| 94 |
-
{
|
| 95 |
-
"name": "vishnu_sahasranamam",
|
| 96 |
-
"title": "Vishnu Sahasranamam",
|
| 97 |
-
"output_dir": "./output/vishnu_sahasranamam",
|
| 98 |
-
"collection_name": "vishnu_sahasranamam",
|
| 99 |
-
"pdf_path": "./data/vishnu_sahasranamam.pdf",
|
| 100 |
-
"language": "san+eng",
|
| 101 |
-
"example_labels": ["Vanamali", "1000 names", "Sanskrit text search"],
|
| 102 |
-
"examples": [
|
| 103 |
-
"Vanamali",
|
| 104 |
-
"Show some of the 1000 names of Vishnu along with their meaning",
|
| 105 |
-
"show the verse that begins with शुक्लाम्बरधरं",
|
| 106 |
-
],
|
| 107 |
-
},
|
| 108 |
-
]
|
|
|
|
| 1 |
+
class SanatanConfig:
|
| 2 |
+
# shuklaYajurVedamPdfPath: str = "./data/shukla-yajur-veda.pdf"
|
| 3 |
+
# shuklaYajurVedamSmallPdfPath: str = "./data/shukla-yajur-veda-small.pdf"
|
| 4 |
+
# vishnuPuranamPdfPath = "./data/vishnu_puranam.pdf"
|
| 5 |
+
# datastores = [{"name": "sanskrit_001", "dbStorePath": "./chromadb-store"}, {"name": "nalayiram", "dbStorePath": "./chromadb-store-4000"}]
|
| 6 |
+
dbStorePath: str = "./chromadb-store"
|
| 7 |
+
# shuklaYajurVedamCollectionName: str = "shukla_yajur_vedam"
|
| 8 |
+
# vishnuPuranamCollectionName: str = "vishnu_puranam"
|
| 9 |
+
# shuklaYajurVedamOutputDir = "./output/shukla_yajur_vedam"
|
| 10 |
+
# vishnuPuranamOutputDir = "./output/vishnu_puranam"
|
| 11 |
+
scriptures = [
|
| 12 |
+
{
|
| 13 |
+
"name": "vishnu_puranam",
|
| 14 |
+
"title": "Sri Vishnu Puranam",
|
| 15 |
+
"output_dir": "./output/vishnu_puranam",
|
| 16 |
+
"collection_name": "vishnu_puranam",
|
| 17 |
+
"pdf_path": "./data/vishnu_puranam.pdf",
|
| 18 |
+
"language": "san+eng",
|
| 19 |
+
"example_labels": [
|
| 20 |
+
"Vishnu's form",
|
| 21 |
+
"About the five elements",
|
| 22 |
+
"About Garuda",
|
| 23 |
+
"Weapons of Vishnu",
|
| 24 |
+
],
|
| 25 |
+
"examples": [
|
| 26 |
+
"describe Vishnu's form",
|
| 27 |
+
"five elements and their significance",
|
| 28 |
+
"What is the significance of Garuda? Show some verses that describe him.",
|
| 29 |
+
"What weapons does Vishnu hold?",
|
| 30 |
+
],
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"name": "shukla_yajur_vedam",
|
| 34 |
+
"title": "Shukla Yajur Vedam",
|
| 35 |
+
"output_dir": "./output/shukla_yajur_vedam",
|
| 36 |
+
"collection_name": "shukla_yajur_vedam",
|
| 37 |
+
"pdf_path": "./data/shukla-yajur-veda.pdf",
|
| 38 |
+
"language": "san+eng",
|
| 39 |
+
"example_labels": [
|
| 40 |
+
"About Vedam",
|
| 41 |
+
"About the five elements",
|
| 42 |
+
"About Brahma",
|
| 43 |
+
],
|
| 44 |
+
"examples": [
|
| 45 |
+
"Gist of Shukla Yajur Vedam. Give me some sanskrit verses.",
|
| 46 |
+
"What is the significance of fire and water. show some sanskrit verses",
|
| 47 |
+
"Brahma",
|
| 48 |
+
],
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"name": "bhagavat_gita",
|
| 52 |
+
"title": "Bhagavat Gita",
|
| 53 |
+
"output_dir": "./output/bhagavat_gita",
|
| 54 |
+
"collection_name": "bhagavat_gita",
|
| 55 |
+
"pdf_path": "./data/bhagavat_gita.pdf",
|
| 56 |
+
"language": "san+eng",
|
| 57 |
+
"example_labels": [
|
| 58 |
+
"About Arjuna",
|
| 59 |
+
"About Karma",
|
| 60 |
+
"About birth and death",
|
| 61 |
+
"About the battle field",
|
| 62 |
+
"About Krishna's form",
|
| 63 |
+
],
|
| 64 |
+
"examples": [
|
| 65 |
+
"Show some verses where Krishna advises Arjuna",
|
| 66 |
+
"What does Krishna say about Karma",
|
| 67 |
+
"What does Krishna say about birth and death",
|
| 68 |
+
"describe the battle field",
|
| 69 |
+
"Vishwarupa",
|
| 70 |
+
],
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"name": "valmiki_ramayanam",
|
| 74 |
+
"title": "Valmiki Ramayanam",
|
| 75 |
+
"output_dir": "./output/valmiki_ramayanam",
|
| 76 |
+
"collection_name": "valmiki_ramayanam",
|
| 77 |
+
"pdf_path": "./data/valmiki_ramayanam.pdf",
|
| 78 |
+
"language": "san+eng",
|
| 79 |
+
"example_labels": [
|
| 80 |
+
"About Jatayu",
|
| 81 |
+
"About Hanuman",
|
| 82 |
+
"About Vali",
|
| 83 |
+
"About Sita",
|
| 84 |
+
"About Ravana",
|
| 85 |
+
],
|
| 86 |
+
"examples": [
|
| 87 |
+
"What is the significance of Jatayu? show some sanskrit verses to support the argument",
|
| 88 |
+
"Show some verses where Hanuman is mentioned",
|
| 89 |
+
"How did Rama kill Vali",
|
| 90 |
+
"How was Sita abducted",
|
| 91 |
+
"How did Rama kill Ravana?",
|
| 92 |
+
],
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"name": "vishnu_sahasranamam",
|
| 96 |
+
"title": "Vishnu Sahasranamam",
|
| 97 |
+
"output_dir": "./output/vishnu_sahasranamam",
|
| 98 |
+
"collection_name": "vishnu_sahasranamam",
|
| 99 |
+
"pdf_path": "./data/vishnu_sahasranamam.pdf",
|
| 100 |
+
"language": "san+eng",
|
| 101 |
+
"example_labels": ["Vanamali", "1000 names", "Sanskrit text search"],
|
| 102 |
+
"examples": [
|
| 103 |
+
"Vanamali",
|
| 104 |
+
"Show some of the 1000 names of Vishnu along with their meaning",
|
| 105 |
+
"show the verse that begins with शुक्लाम्बरधरं",
|
| 106 |
+
],
|
| 107 |
+
},
|
| 108 |
+
]
|
db.py
CHANGED
|
@@ -1,35 +1,35 @@
|
|
| 1 |
-
import chromadb
|
| 2 |
-
|
| 3 |
-
from config import SanatanConfig
|
| 4 |
-
from embeddings import get_embedding
|
| 5 |
-
import logging
|
| 6 |
-
|
| 7 |
-
logger = logging.getLogger(__name__)
|
| 8 |
-
logger.setLevel(logging.INFO)
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
class SanatanDatabase:
|
| 12 |
-
def __init__(self) -> None:
|
| 13 |
-
self.chroma_client = chromadb.PersistentClient(path=SanatanConfig.dbStorePath)
|
| 14 |
-
|
| 15 |
-
def does_data_exist(self, collection_name: str) -> bool:
|
| 16 |
-
collection = self.chroma_client.get_or_create_collection(name=collection_name)
|
| 17 |
-
num_rows = collection.count()
|
| 18 |
-
logger.info("num_rows in %s = %d", collection_name, num_rows)
|
| 19 |
-
return num_rows > 0
|
| 20 |
-
|
| 21 |
-
def load(self, collection_name: str, ids, documents, embeddings, metadatas):
|
| 22 |
-
collection = self.chroma_client.get_or_create_collection(name=collection_name)
|
| 23 |
-
collection.add(
|
| 24 |
-
ids=ids,
|
| 25 |
-
documents=documents,
|
| 26 |
-
embeddings=embeddings,
|
| 27 |
-
metadatas=metadatas,
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
def search(self, collection_name: str, query: str, n_results=2):
|
| 31 |
-
collection = self.chroma_client.get_or_create_collection(name=collection_name)
|
| 32 |
-
response = collection.query(
|
| 33 |
-
query_embeddings=[get_embedding(query)], n_results=n_results
|
| 34 |
-
)
|
| 35 |
-
return response
|
|
|
|
| 1 |
+
import chromadb
|
| 2 |
+
|
| 3 |
+
from config import SanatanConfig
|
| 4 |
+
from embeddings import get_embedding
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
logger = logging.getLogger(__name__)
|
| 8 |
+
logger.setLevel(logging.INFO)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class SanatanDatabase:
|
| 12 |
+
def __init__(self) -> None:
|
| 13 |
+
self.chroma_client = chromadb.PersistentClient(path=SanatanConfig.dbStorePath)
|
| 14 |
+
|
| 15 |
+
def does_data_exist(self, collection_name: str) -> bool:
|
| 16 |
+
collection = self.chroma_client.get_or_create_collection(name=collection_name)
|
| 17 |
+
num_rows = collection.count()
|
| 18 |
+
logger.info("num_rows in %s = %d", collection_name, num_rows)
|
| 19 |
+
return num_rows > 0
|
| 20 |
+
|
| 21 |
+
def load(self, collection_name: str, ids, documents, embeddings, metadatas):
|
| 22 |
+
collection = self.chroma_client.get_or_create_collection(name=collection_name)
|
| 23 |
+
collection.add(
|
| 24 |
+
ids=ids,
|
| 25 |
+
documents=documents,
|
| 26 |
+
embeddings=embeddings,
|
| 27 |
+
metadatas=metadatas,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def search(self, collection_name: str, query: str, n_results=2):
|
| 31 |
+
collection = self.chroma_client.get_or_create_collection(name=collection_name)
|
| 32 |
+
response = collection.query(
|
| 33 |
+
query_embeddings=[get_embedding(query)], n_results=n_results
|
| 34 |
+
)
|
| 35 |
+
return response
|
drive_downloader.py
CHANGED
|
@@ -1,44 +1,44 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import json
|
| 3 |
-
import io
|
| 4 |
-
import zipfile
|
| 5 |
-
|
| 6 |
-
from google.oauth2.service_account import Credentials
|
| 7 |
-
from googleapiclient.discovery import build
|
| 8 |
-
from googleapiclient.http import MediaIoBaseDownload
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
class ZipDownloader:
|
| 12 |
-
def __init__(self, service_account_json: str):
|
| 13 |
-
self.creds = Credentials.from_service_account_info(json.loads(service_account_json))
|
| 14 |
-
self.service = build("drive", "v3", credentials=self.creds)
|
| 15 |
-
|
| 16 |
-
def download_zip_from_drive(self, file_id: str, output_path: str) -> str:
|
| 17 |
-
"""
|
| 18 |
-
Downloads a ZIP file from Google Drive and saves it locally.
|
| 19 |
-
Returns the path to the downloaded ZIP.
|
| 20 |
-
"""
|
| 21 |
-
request = self.service.files().get_media(fileId=file_id)
|
| 22 |
-
local_zip_path = os.path.join(output_path, "downloaded.zip")
|
| 23 |
-
|
| 24 |
-
os.makedirs(output_path, exist_ok=True)
|
| 25 |
-
fh = io.FileIO(local_zip_path, 'wb')
|
| 26 |
-
downloader = MediaIoBaseDownload(fh, request)
|
| 27 |
-
|
| 28 |
-
print(f"⬇️ Downloading ZIP file from Drive ID: {file_id}")
|
| 29 |
-
done = False
|
| 30 |
-
while not done:
|
| 31 |
-
status, done = downloader.next_chunk()
|
| 32 |
-
print(f" ⏬ Progress: {int(status.progress() * 100)}%")
|
| 33 |
-
|
| 34 |
-
print(f"✅ ZIP downloaded to: {local_zip_path}")
|
| 35 |
-
return local_zip_path
|
| 36 |
-
|
| 37 |
-
def unzip(self, zip_path: str, extract_to: str):
|
| 38 |
-
"""
|
| 39 |
-
Unzips the downloaded ZIP file to a specified directory.
|
| 40 |
-
"""
|
| 41 |
-
print(f"📂 Extracting ZIP: {zip_path} -> {extract_to}")
|
| 42 |
-
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 43 |
-
zip_ref.extractall(extract_to)
|
| 44 |
-
print("✅ Extraction complete.")
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import io
|
| 4 |
+
import zipfile
|
| 5 |
+
|
| 6 |
+
from google.oauth2.service_account import Credentials
|
| 7 |
+
from googleapiclient.discovery import build
|
| 8 |
+
from googleapiclient.http import MediaIoBaseDownload
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ZipDownloader:
|
| 12 |
+
def __init__(self, service_account_json: str):
|
| 13 |
+
self.creds = Credentials.from_service_account_info(json.loads(service_account_json))
|
| 14 |
+
self.service = build("drive", "v3", credentials=self.creds)
|
| 15 |
+
|
| 16 |
+
def download_zip_from_drive(self, file_id: str, output_path: str) -> str:
|
| 17 |
+
"""
|
| 18 |
+
Downloads a ZIP file from Google Drive and saves it locally.
|
| 19 |
+
Returns the path to the downloaded ZIP.
|
| 20 |
+
"""
|
| 21 |
+
request = self.service.files().get_media(fileId=file_id)
|
| 22 |
+
local_zip_path = os.path.join(output_path, "downloaded.zip")
|
| 23 |
+
|
| 24 |
+
os.makedirs(output_path, exist_ok=True)
|
| 25 |
+
fh = io.FileIO(local_zip_path, 'wb')
|
| 26 |
+
downloader = MediaIoBaseDownload(fh, request)
|
| 27 |
+
|
| 28 |
+
print(f"⬇️ Downloading ZIP file from Drive ID: {file_id}")
|
| 29 |
+
done = False
|
| 30 |
+
while not done:
|
| 31 |
+
status, done = downloader.next_chunk()
|
| 32 |
+
print(f" ⏬ Progress: {int(status.progress() * 100)}%")
|
| 33 |
+
|
| 34 |
+
print(f"✅ ZIP downloaded to: {local_zip_path}")
|
| 35 |
+
return local_zip_path
|
| 36 |
+
|
| 37 |
+
def unzip(self, zip_path: str, extract_to: str):
|
| 38 |
+
"""
|
| 39 |
+
Unzips the downloaded ZIP file to a specified directory.
|
| 40 |
+
"""
|
| 41 |
+
print(f"📂 Extracting ZIP: {zip_path} -> {extract_to}")
|
| 42 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 43 |
+
zip_ref.extractall(extract_to)
|
| 44 |
+
print("✅ Extraction complete.")
|
embeddings.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
-
|
| 2 |
-
from sentence_transformers import SentenceTransformer
|
| 3 |
-
|
| 4 |
-
# Step 1: Load SentenceTransformer model
|
| 5 |
-
# model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 6 |
-
model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 7 |
-
|
| 8 |
-
def get_embedding(text: str) -> list:
|
| 9 |
-
return model.encode(text).tolist()
|
|
|
|
| 1 |
+
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
|
| 4 |
+
# Step 1: Load SentenceTransformer model
|
| 5 |
+
# model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 6 |
+
model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 7 |
+
|
| 8 |
+
def get_embedding(text: str) -> list:
|
| 9 |
+
return model.encode(text).tolist()
|
graph_helper.py
CHANGED
|
@@ -1,103 +1,103 @@
|
|
| 1 |
-
from typing import Annotated, TypedDict
|
| 2 |
-
from langgraph.graph import StateGraph, START, END
|
| 3 |
-
from langgraph.checkpoint.memory import MemorySaver
|
| 4 |
-
from langgraph.graph.message import add_messages
|
| 5 |
-
from langchain_openai import ChatOpenAI
|
| 6 |
-
from langgraph.graph.state import CompiledStateGraph
|
| 7 |
-
from tools import (
|
| 8 |
-
tool_format_scripture_answer,
|
| 9 |
-
tool_search_db,
|
| 10 |
-
tool_search_web,
|
| 11 |
-
tool_push,
|
| 12 |
-
)
|
| 13 |
-
from langgraph.prebuilt import ToolNode, tools_condition
|
| 14 |
-
from langchain_core.messages import SystemMessage, ToolMessage, HumanMessage
|
| 15 |
-
import logging
|
| 16 |
-
|
| 17 |
-
logger = logging.getLogger(__name__)
|
| 18 |
-
logger.setLevel(logging.INFO)
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
class ChatState(TypedDict):
|
| 22 |
-
messages: Annotated[list[str], add_messages]
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def generate_graph() -> CompiledStateGraph:
|
| 26 |
-
memory = MemorySaver()
|
| 27 |
-
tools = [tool_search_web, tool_push, tool_search_db, tool_format_scripture_answer]
|
| 28 |
-
llm = ChatOpenAI(model="gpt-4o-mini").bind_tools(tools)
|
| 29 |
-
|
| 30 |
-
def chatNode(state: ChatState) -> ChatState:
|
| 31 |
-
# logger.info("messages before LLM: %s", str(state["messages"]))
|
| 32 |
-
response = llm.invoke(state["messages"])
|
| 33 |
-
# return {"messages": [response]}
|
| 34 |
-
return {"messages": state["messages"] + [response]}
|
| 35 |
-
|
| 36 |
-
def init_system_prompt_node(state: ChatState) -> ChatState:
|
| 37 |
-
messages = state["messages"] or []
|
| 38 |
-
|
| 39 |
-
# Check if system prompts were already added
|
| 40 |
-
already_has_prompt = any(
|
| 41 |
-
isinstance(m, SystemMessage) and "format_scripture_answer" in m.content
|
| 42 |
-
for m in messages
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
if not already_has_prompt:
|
| 46 |
-
messages += [
|
| 47 |
-
SystemMessage(
|
| 48 |
-
content="⚠️ Do NOT summarize or compress the output from the `query` tool. It will be passed directly to `format_scripture_answer` tool that formats the answer **AS IS**. DO NOT REMOVE SANSKRIT TEXTS"
|
| 49 |
-
),
|
| 50 |
-
SystemMessage(
|
| 51 |
-
content="You MUST call the `format_scripture_answer` tool if the user question is about scripture content and the `query` tool has returned a result."
|
| 52 |
-
),
|
| 53 |
-
SystemMessage(
|
| 54 |
-
content="If the user's question is about any scripture content (even if multiple scriptures), you must use the `tool_search_db`. Only use `tool_search_web` for general non-scriptural questions."
|
| 55 |
-
),
|
| 56 |
-
]
|
| 57 |
-
|
| 58 |
-
return {"messages": messages}
|
| 59 |
-
|
| 60 |
-
# def chatNode(state: ChatState) -> ChatState:
|
| 61 |
-
# messages = state["messages"]
|
| 62 |
-
# system_prompt = None
|
| 63 |
-
# new_messages = []
|
| 64 |
-
|
| 65 |
-
# for m in messages:
|
| 66 |
-
# if isinstance(m, ToolMessage):
|
| 67 |
-
# print("m.name = ", m.name)
|
| 68 |
-
# if m.name == "format_scripture_answer":
|
| 69 |
-
# system_prompt = m.content
|
| 70 |
-
# else:
|
| 71 |
-
# new_messages.append(m)
|
| 72 |
-
|
| 73 |
-
# if system_prompt:
|
| 74 |
-
# full_history = [
|
| 75 |
-
# SystemMessage(content=system_prompt),
|
| 76 |
-
# SystemMessage(
|
| 77 |
-
# content="⚠️ Do NOT summarize or compress the context from the query tool. It will be passed directly to another tool that formats the answer."
|
| 78 |
-
# ),
|
| 79 |
-
# SystemMessage(
|
| 80 |
-
# content="You MUST call the `format_scripture_answer` tool if the user question is about scripture content and the query tool has returned a result."
|
| 81 |
-
# ),
|
| 82 |
-
# ] + new_messages
|
| 83 |
-
# else:
|
| 84 |
-
# full_history = messages
|
| 85 |
-
|
| 86 |
-
# # 🔍 Debug log (optional)
|
| 87 |
-
# # print("\n🧠 LLM Full History:")
|
| 88 |
-
# # for m in full_history:
|
| 89 |
-
# # print(f"- {m.type.upper()}: {m.content[:100]}...\n")
|
| 90 |
-
|
| 91 |
-
# ai_response = llm.invoke(full_history)
|
| 92 |
-
# return {"messages": messages + [ai_response]}
|
| 93 |
-
|
| 94 |
-
graph = StateGraph(ChatState)
|
| 95 |
-
graph.add_node("init", init_system_prompt_node)
|
| 96 |
-
graph.add_node("chat", chatNode)
|
| 97 |
-
graph.add_node("tools", ToolNode(tools))
|
| 98 |
-
graph.add_edge(START, "init")
|
| 99 |
-
graph.add_edge("init", "chat")
|
| 100 |
-
graph.add_conditional_edges("chat", tools_condition, "tools")
|
| 101 |
-
graph.add_edge("tools", "chat")
|
| 102 |
-
|
| 103 |
-
return graph.compile(checkpointer=memory)
|
|
|
|
| 1 |
+
from typing import Annotated, TypedDict
|
| 2 |
+
from langgraph.graph import StateGraph, START, END
|
| 3 |
+
from langgraph.checkpoint.memory import MemorySaver
|
| 4 |
+
from langgraph.graph.message import add_messages
|
| 5 |
+
from langchain_openai import ChatOpenAI
|
| 6 |
+
from langgraph.graph.state import CompiledStateGraph
|
| 7 |
+
from tools import (
|
| 8 |
+
tool_format_scripture_answer,
|
| 9 |
+
tool_search_db,
|
| 10 |
+
tool_search_web,
|
| 11 |
+
tool_push,
|
| 12 |
+
)
|
| 13 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 14 |
+
from langchain_core.messages import SystemMessage, ToolMessage, HumanMessage
|
| 15 |
+
import logging
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
logger.setLevel(logging.INFO)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ChatState(TypedDict):
|
| 22 |
+
messages: Annotated[list[str], add_messages]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def generate_graph() -> CompiledStateGraph:
|
| 26 |
+
memory = MemorySaver()
|
| 27 |
+
tools = [tool_search_web, tool_push, tool_search_db, tool_format_scripture_answer]
|
| 28 |
+
llm = ChatOpenAI(model="gpt-4o-mini").bind_tools(tools)
|
| 29 |
+
|
| 30 |
+
def chatNode(state: ChatState) -> ChatState:
|
| 31 |
+
# logger.info("messages before LLM: %s", str(state["messages"]))
|
| 32 |
+
response = llm.invoke(state["messages"])
|
| 33 |
+
# return {"messages": [response]}
|
| 34 |
+
return {"messages": state["messages"] + [response]}
|
| 35 |
+
|
| 36 |
+
def init_system_prompt_node(state: ChatState) -> ChatState:
|
| 37 |
+
messages = state["messages"] or []
|
| 38 |
+
|
| 39 |
+
# Check if system prompts were already added
|
| 40 |
+
already_has_prompt = any(
|
| 41 |
+
isinstance(m, SystemMessage) and "format_scripture_answer" in m.content
|
| 42 |
+
for m in messages
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
if not already_has_prompt:
|
| 46 |
+
messages += [
|
| 47 |
+
SystemMessage(
|
| 48 |
+
content="⚠️ Do NOT summarize or compress the output from the `query` tool. It will be passed directly to `format_scripture_answer` tool that formats the answer **AS IS**. DO NOT REMOVE SANSKRIT TEXTS"
|
| 49 |
+
),
|
| 50 |
+
SystemMessage(
|
| 51 |
+
content="You MUST call the `format_scripture_answer` tool if the user question is about scripture content and the `query` tool has returned a result."
|
| 52 |
+
),
|
| 53 |
+
SystemMessage(
|
| 54 |
+
content="If the user's question is about any scripture content (even if multiple scriptures), you must use the `tool_search_db`. Only use `tool_search_web` for general non-scriptural questions."
|
| 55 |
+
),
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
return {"messages": messages}
|
| 59 |
+
|
| 60 |
+
# def chatNode(state: ChatState) -> ChatState:
|
| 61 |
+
# messages = state["messages"]
|
| 62 |
+
# system_prompt = None
|
| 63 |
+
# new_messages = []
|
| 64 |
+
|
| 65 |
+
# for m in messages:
|
| 66 |
+
# if isinstance(m, ToolMessage):
|
| 67 |
+
# print("m.name = ", m.name)
|
| 68 |
+
# if m.name == "format_scripture_answer":
|
| 69 |
+
# system_prompt = m.content
|
| 70 |
+
# else:
|
| 71 |
+
# new_messages.append(m)
|
| 72 |
+
|
| 73 |
+
# if system_prompt:
|
| 74 |
+
# full_history = [
|
| 75 |
+
# SystemMessage(content=system_prompt),
|
| 76 |
+
# SystemMessage(
|
| 77 |
+
# content="⚠️ Do NOT summarize or compress the context from the query tool. It will be passed directly to another tool that formats the answer."
|
| 78 |
+
# ),
|
| 79 |
+
# SystemMessage(
|
| 80 |
+
# content="You MUST call the `format_scripture_answer` tool if the user question is about scripture content and the query tool has returned a result."
|
| 81 |
+
# ),
|
| 82 |
+
# ] + new_messages
|
| 83 |
+
# else:
|
| 84 |
+
# full_history = messages
|
| 85 |
+
|
| 86 |
+
# # 🔍 Debug log (optional)
|
| 87 |
+
# # print("\n🧠 LLM Full History:")
|
| 88 |
+
# # for m in full_history:
|
| 89 |
+
# # print(f"- {m.type.upper()}: {m.content[:100]}...\n")
|
| 90 |
+
|
| 91 |
+
# ai_response = llm.invoke(full_history)
|
| 92 |
+
# return {"messages": messages + [ai_response]}
|
| 93 |
+
|
| 94 |
+
graph = StateGraph(ChatState)
|
| 95 |
+
graph.add_node("init", init_system_prompt_node)
|
| 96 |
+
graph.add_node("chat", chatNode)
|
| 97 |
+
graph.add_node("tools", ToolNode(tools))
|
| 98 |
+
graph.add_edge(START, "init")
|
| 99 |
+
graph.add_edge("init", "chat")
|
| 100 |
+
graph.add_conditional_edges("chat", tools_condition, "tools")
|
| 101 |
+
graph.add_edge("tools", "chat")
|
| 102 |
+
|
| 103 |
+
return graph.compile(checkpointer=memory)
|
push_notifications_helper.py
CHANGED
|
@@ -1,24 +1,24 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import requests
|
| 3 |
-
from dotenv import load_dotenv
|
| 4 |
-
import logging
|
| 5 |
-
|
| 6 |
-
logger = logging.getLogger()
|
| 7 |
-
logger.setLevel(logging.INFO)
|
| 8 |
-
|
| 9 |
-
load_dotenv(override=True)
|
| 10 |
-
|
| 11 |
-
pushover_token = os.getenv("PUSHOVER_TOKEN")
|
| 12 |
-
pushover_user = os.getenv("PUSHOVER_USER")
|
| 13 |
-
pushover_url = "https://api.pushover.net/1/messages.json"
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def push(text: str):
|
| 17 |
-
"""Send a push notification to the user"""
|
| 18 |
-
logger.info("Sending a push notification for %s", text)
|
| 19 |
-
response = requests.post(
|
| 20 |
-
pushover_url,
|
| 21 |
-
data={"token": pushover_token, "user": pushover_user, "message": text},
|
| 22 |
-
)
|
| 23 |
-
logger.info("response = %s", response.json())
|
| 24 |
-
logger.info("Sent notification")
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
logger = logging.getLogger()
|
| 7 |
+
logger.setLevel(logging.INFO)
|
| 8 |
+
|
| 9 |
+
load_dotenv(override=True)
|
| 10 |
+
|
| 11 |
+
pushover_token = os.getenv("PUSHOVER_TOKEN")
|
| 12 |
+
pushover_user = os.getenv("PUSHOVER_USER")
|
| 13 |
+
pushover_url = "https://api.pushover.net/1/messages.json"
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def push(text: str):
|
| 17 |
+
"""Send a push notification to the user"""
|
| 18 |
+
logger.info("Sending a push notification for %s", text)
|
| 19 |
+
response = requests.post(
|
| 20 |
+
pushover_url,
|
| 21 |
+
data={"token": pushover_token, "user": pushover_user, "message": text},
|
| 22 |
+
)
|
| 23 |
+
logger.info("response = %s", response.json())
|
| 24 |
+
logger.info("Sent notification")
|
sanatan_assistant.py
CHANGED
|
@@ -1,98 +1,98 @@
|
|
| 1 |
-
import logging
|
| 2 |
-
from typing import Literal
|
| 3 |
-
from dotenv import load_dotenv
|
| 4 |
-
from config import SanatanConfig
|
| 5 |
-
from db import SanatanDatabase
|
| 6 |
-
|
| 7 |
-
load_dotenv(override=True)
|
| 8 |
-
logger = logging.getLogger(__name__)
|
| 9 |
-
logger.setLevel(logging.INFO)
|
| 10 |
-
|
| 11 |
-
sanatanDatabase = SanatanDatabase()
|
| 12 |
-
allowedCollections = Literal[
|
| 13 |
-
*[scripture["collection_name"] for scripture in SanatanConfig.scriptures]
|
| 14 |
-
]
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
def format_scripture_answer(scripture_title: allowedCollections, question: str, query_tool_output: str):
|
| 18 |
-
"""
|
| 19 |
-
Use this tool to generate a custom system prompt based on the scripture title, question, and query_tool_output.
|
| 20 |
-
|
| 21 |
-
This is especially useful when the user has asked a question about a scripture, and the relevant context has been fetched using the `query` tool.
|
| 22 |
-
|
| 23 |
-
The generated prompt will guide the assistant to respond using only that scripture’s content, with a clear format including Sanskrit verses, English explanations, and source chapters.
|
| 24 |
-
"""
|
| 25 |
-
|
| 26 |
-
prompt = f"""You are a knowledgeable assistant on the scripture *{scripture_title}*, well-versed in both **Sanskrit** and **English**.
|
| 27 |
-
|
| 28 |
-
You must answer the question using **only** the content from *{scripture_title}* provided in the context below.
|
| 29 |
-
- Do **not** bring in information from **any other scripture or source**, or from prior knowledge, even if the answer seems obvious or well-known.
|
| 30 |
-
- Do **not** quote any Sanskrit verses unless they appear **explicitly** in the provided context.
|
| 31 |
-
- Do **not** use verse numbers or line references unless clearly mentioned in the context.
|
| 32 |
-
- If the answer cannot be found in the context, clearly say:
|
| 33 |
-
**"I do not have enough information from the {scripture_title} to answer this."**
|
| 34 |
-
|
| 35 |
-
If the answer is not directly stated in the verses but is present in explanatory notes within the context, you may interpret — but **explicitly mention that it is an interpretation**.
|
| 36 |
-
|
| 37 |
-
If the user query is not small talk, use the following response format (in Markdown):
|
| 38 |
-
|
| 39 |
-
### 🧾 Answer
|
| 40 |
-
- Present the explanation in clear, concise **English**.
|
| 41 |
-
- If it is an interpretation, say so explicitly.
|
| 42 |
-
|
| 43 |
-
### 🔍 Scripture
|
| 44 |
-
- Mention the scripture from which the references were taken.
|
| 45 |
-
|
| 46 |
-
### 🔍 Chapter
|
| 47 |
-
- Mention the chapter(s) from which the references were taken.
|
| 48 |
-
- Only mention chapters if they are explicitly part of the context.
|
| 49 |
-
|
| 50 |
-
### 📜 Supporting Sanskrit Verse(s)
|
| 51 |
-
- Quote **only the most relevant** Sanskrit verse(s) from the context.
|
| 52 |
-
- Do **not** add verses from memory or outside the context.
|
| 53 |
-
- Format each verse clearly, one per line.
|
| 54 |
-
- **Avoid transliteration unless no Devanagari is available.**
|
| 55 |
-
- Do **not** provide English text in this section.
|
| 56 |
-
|
| 57 |
-
### 🔍 English Translation
|
| 58 |
-
- Provide the **corresponding English meaning** for each Sanskrit verse shown.
|
| 59 |
-
- Keep it readable and aligned with the verse above.
|
| 60 |
-
|
| 61 |
-
### Notes
|
| 62 |
-
- Bullet any extra points or cross-references from explanatory notes **only if present in the context**.
|
| 63 |
-
- Do **not** include anything that is not supported or implied in the context.
|
| 64 |
-
|
| 65 |
-
**Question:**
|
| 66 |
-
{question}
|
| 67 |
-
|
| 68 |
-
---
|
| 69 |
-
|
| 70 |
-
**Context:**
|
| 71 |
-
{query_tool_output}
|
| 72 |
-
|
| 73 |
-
---
|
| 74 |
-
|
| 75 |
-
Respond in **Markdown** format only. Ensure Sanskrit verses are always clearly shown and translated. If a section does not apply (e.g. no verses), you may omit it.
|
| 76 |
-
"""
|
| 77 |
-
|
| 78 |
-
return prompt
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def query(collection_name: allowedCollections, query: str, n_results=5):
|
| 83 |
-
"""
|
| 84 |
-
Search a scripture collection.
|
| 85 |
-
|
| 86 |
-
Parameters:
|
| 87 |
-
- collection_name (str): The name of the scripture collection to search. ...
|
| 88 |
-
- query (str): The search query.
|
| 89 |
-
- n_results (int): Number of results to return. Default is 5.
|
| 90 |
-
|
| 91 |
-
Returns:
|
| 92 |
-
- A list of matching results.
|
| 93 |
-
"""
|
| 94 |
-
logger.info("Searching collection [%s] for [%s]", collection_name, query)
|
| 95 |
-
response = sanatanDatabase.search(
|
| 96 |
-
collection_name=collection_name, query=query, n_results=n_results
|
| 97 |
-
)
|
| 98 |
-
return "\n\n".join(response["documents"][0])
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import Literal
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
from config import SanatanConfig
|
| 5 |
+
from db import SanatanDatabase
|
| 6 |
+
|
| 7 |
+
load_dotenv(override=True)
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
logger.setLevel(logging.INFO)
|
| 10 |
+
|
| 11 |
+
sanatanDatabase = SanatanDatabase()
|
| 12 |
+
allowedCollections = Literal[
|
| 13 |
+
*[scripture["collection_name"] for scripture in SanatanConfig.scriptures]
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def format_scripture_answer(scripture_title: allowedCollections, question: str, query_tool_output: str):
|
| 18 |
+
"""
|
| 19 |
+
Use this tool to generate a custom system prompt based on the scripture title, question, and query_tool_output.
|
| 20 |
+
|
| 21 |
+
This is especially useful when the user has asked a question about a scripture, and the relevant context has been fetched using the `query` tool.
|
| 22 |
+
|
| 23 |
+
The generated prompt will guide the assistant to respond using only that scripture’s content, with a clear format including Sanskrit verses, English explanations, and source chapters.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
prompt = f"""You are a knowledgeable assistant on the scripture *{scripture_title}*, well-versed in both **Sanskrit** and **English**.
|
| 27 |
+
|
| 28 |
+
You must answer the question using **only** the content from *{scripture_title}* provided in the context below.
|
| 29 |
+
- Do **not** bring in information from **any other scripture or source**, or from prior knowledge, even if the answer seems obvious or well-known.
|
| 30 |
+
- Do **not** quote any Sanskrit verses unless they appear **explicitly** in the provided context.
|
| 31 |
+
- Do **not** use verse numbers or line references unless clearly mentioned in the context.
|
| 32 |
+
- If the answer cannot be found in the context, clearly say:
|
| 33 |
+
**"I do not have enough information from the {scripture_title} to answer this."**
|
| 34 |
+
|
| 35 |
+
If the answer is not directly stated in the verses but is present in explanatory notes within the context, you may interpret — but **explicitly mention that it is an interpretation**.
|
| 36 |
+
|
| 37 |
+
If the user query is not small talk, use the following response format (in Markdown):
|
| 38 |
+
|
| 39 |
+
### 🧾 Answer
|
| 40 |
+
- Present the explanation in clear, concise **English**.
|
| 41 |
+
- If it is an interpretation, say so explicitly.
|
| 42 |
+
|
| 43 |
+
### 🔍 Scripture
|
| 44 |
+
- Mention the scripture from which the references were taken.
|
| 45 |
+
|
| 46 |
+
### 🔍 Chapter
|
| 47 |
+
- Mention the chapter(s) from which the references were taken.
|
| 48 |
+
- Only mention chapters if they are explicitly part of the context.
|
| 49 |
+
|
| 50 |
+
### 📜 Supporting Sanskrit Verse(s)
|
| 51 |
+
- Quote **only the most relevant** Sanskrit verse(s) from the context.
|
| 52 |
+
- Do **not** add verses from memory or outside the context.
|
| 53 |
+
- Format each verse clearly, one per line.
|
| 54 |
+
- **Avoid transliteration unless no Devanagari is available.**
|
| 55 |
+
- Do **not** provide English text in this section.
|
| 56 |
+
|
| 57 |
+
### 🔍 English Translation
|
| 58 |
+
- Provide the **corresponding English meaning** for each Sanskrit verse shown.
|
| 59 |
+
- Keep it readable and aligned with the verse above.
|
| 60 |
+
|
| 61 |
+
### Notes
|
| 62 |
+
- Bullet any extra points or cross-references from explanatory notes **only if present in the context**.
|
| 63 |
+
- Do **not** include anything that is not supported or implied in the context.
|
| 64 |
+
|
| 65 |
+
**Question:**
|
| 66 |
+
{question}
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
**Context:**
|
| 71 |
+
{query_tool_output}
|
| 72 |
+
|
| 73 |
+
---
|
| 74 |
+
|
| 75 |
+
Respond in **Markdown** format only. Ensure Sanskrit verses are always clearly shown and translated. If a section does not apply (e.g. no verses), you may omit it.
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
return prompt
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def query(collection_name: allowedCollections, query: str, n_results=5):
|
| 83 |
+
"""
|
| 84 |
+
Search a scripture collection.
|
| 85 |
+
|
| 86 |
+
Parameters:
|
| 87 |
+
- collection_name (str): The name of the scripture collection to search. ...
|
| 88 |
+
- query (str): The search query.
|
| 89 |
+
- n_results (int): Number of results to return. Default is 5.
|
| 90 |
+
|
| 91 |
+
Returns:
|
| 92 |
+
- A list of matching results.
|
| 93 |
+
"""
|
| 94 |
+
logger.info("Searching collection [%s] for [%s]", collection_name, query)
|
| 95 |
+
response = sanatanDatabase.search(
|
| 96 |
+
collection_name=collection_name, query=query, n_results=n_results
|
| 97 |
+
)
|
| 98 |
+
return "\n\n".join(response["documents"][0])
|
serperdev_helper.py
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
-
from langchain_community.utilities import GoogleSerperAPIWrapper
|
| 2 |
-
from dotenv import load_dotenv
|
| 3 |
-
import logging
|
| 4 |
-
|
| 5 |
-
load_dotenv(override=True)
|
| 6 |
-
logger = logging.getLogger(__name__)
|
| 7 |
-
logger.setLevel(logging.INFO)
|
| 8 |
-
|
| 9 |
-
serper = GoogleSerperAPIWrapper()
|
| 10 |
-
|
| 11 |
-
def search(query: str):
|
| 12 |
-
"""Search the web for any given query"""
|
| 13 |
-
logger.info("Searching the web for %s", query)
|
| 14 |
return serper.run(query)
|
|
|
|
| 1 |
+
from langchain_community.utilities import GoogleSerperAPIWrapper
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import logging
|
| 4 |
+
|
| 5 |
+
load_dotenv(override=True)
|
| 6 |
+
logger = logging.getLogger(__name__)
|
| 7 |
+
logger.setLevel(logging.INFO)
|
| 8 |
+
|
| 9 |
+
serper = GoogleSerperAPIWrapper()
|
| 10 |
+
|
| 11 |
+
def search(query: str):
|
| 12 |
+
"""Search the web for any given query"""
|
| 13 |
+
logger.info("Searching the web for %s", query)
|
| 14 |
return serper.run(query)
|
tools.py
CHANGED
|
@@ -1,28 +1,28 @@
|
|
| 1 |
-
from langchain.agents import Tool
|
| 2 |
-
from langchain_core.tools import StructuredTool
|
| 3 |
-
|
| 4 |
-
from config import SanatanConfig
|
| 5 |
-
from push_notifications_helper import push
|
| 6 |
-
from serperdev_helper import search as search_web
|
| 7 |
-
from sanatan_assistant import format_scripture_answer, query
|
| 8 |
-
|
| 9 |
-
tool_push = Tool(
|
| 10 |
-
name="push", description="Send a push notification to the user", func=push
|
| 11 |
-
)
|
| 12 |
-
|
| 13 |
-
allowed_collections = [s["collection_name"] for s in SanatanConfig.scriptures]
|
| 14 |
-
|
| 15 |
-
tool_search_db = StructuredTool.from_function(
|
| 16 |
-
query,
|
| 17 |
-
description=(
|
| 18 |
-
"Search within a specific scripture collection. "
|
| 19 |
-
f"The collection_name must be one of: {', '.join(allowed_collections)}."
|
| 20 |
-
" Use this to find relevant scripture verses or explanations."
|
| 21 |
-
),
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
tool_search_web = Tool(
|
| 25 |
-
name="search_web", description="Search the web for information", func=search_web
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
tool_format_scripture_answer = StructuredTool.from_function(format_scripture_answer)
|
|
|
|
| 1 |
+
from langchain.agents import Tool
|
| 2 |
+
from langchain_core.tools import StructuredTool
|
| 3 |
+
|
| 4 |
+
from config import SanatanConfig
|
| 5 |
+
from push_notifications_helper import push
|
| 6 |
+
from serperdev_helper import search as search_web
|
| 7 |
+
from sanatan_assistant import format_scripture_answer, query
|
| 8 |
+
|
| 9 |
+
tool_push = Tool(
|
| 10 |
+
name="push", description="Send a push notification to the user", func=push
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
allowed_collections = [s["collection_name"] for s in SanatanConfig.scriptures]
|
| 14 |
+
|
| 15 |
+
tool_search_db = StructuredTool.from_function(
|
| 16 |
+
query,
|
| 17 |
+
description=(
|
| 18 |
+
"Search within a specific scripture collection. "
|
| 19 |
+
f"The collection_name must be one of: {', '.join(allowed_collections)}."
|
| 20 |
+
" Use this to find relevant scripture verses or explanations."
|
| 21 |
+
),
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
tool_search_web = Tool(
|
| 25 |
+
name="search_web", description="Search the web for information", func=search_web
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
tool_format_scripture_answer = StructuredTool.from_function(format_scripture_answer)
|