Spaces:
Running
on
Zero
Running
on
Zero
| import subprocess | |
| subprocess.run( | |
| 'pip install flash-attn --no-build-isolation', | |
| env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, | |
| shell=True | |
| ) | |
| import os | |
| import time | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
| import gradio as gr | |
| from threading import Thread | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| MODEL = "NousResearch/DeepHermes-3-Llama-3-8B-Preview" | |
| TITLE = "<h1><center>DeepHermes-3-Llama-3-8B</center></h1>" | |
| PLACEHOLDER = """ | |
| <center> | |
| <p>Hi! How can I help you today?</p> | |
| </center> | |
| """ | |
| CSS = """ | |
| .duplicate-button { | |
| margin: auto !important; | |
| color: white !important; | |
| background: black !important; | |
| border-radius: 100vh !important; | |
| } | |
| h3 { | |
| text-align: center; | |
| } | |
| """ | |
| device = "cuda" # for GPU usage or "cpu" for CPU usage | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type= "nf4") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| attn_implementation="flash_attention_2", | |
| quantization_config=quantization_config) | |
| # Ensure `pad_token_id` is set | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| def stream_chat( | |
| message: str, | |
| history: list, | |
| system_prompt: str, | |
| temperature: float = 0.8, | |
| max_new_tokens: int = 2500, | |
| top_p: float = 1.0, | |
| top_k: int = 20, | |
| penalty: float = 1.1, | |
| ): | |
| print(f'message: {message}') | |
| print(f'history: {history}') | |
| conversation = [ | |
| {"role": "system", "content": system_prompt} | |
| ] | |
| for prompt, answer in history: | |
| conversation.extend([ | |
| {"role": "user", "content": prompt}, | |
| {"role": "assistant", "content": answer}, | |
| ]) | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids=input_ids, | |
| max_new_tokens = max_new_tokens, | |
| do_sample = False if temperature == 0 else True, | |
| top_p = top_p, | |
| top_k = top_k, | |
| eos_token_id = tokenizer.eos_token_id, | |
| pad_token_id = tokenizer.pad_token_id, | |
| temperature = temperature, | |
| repetition_penalty=penalty, | |
| streamer=streamer, | |
| ) | |
| with torch.no_grad(): | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer | |
| chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) | |
| with gr.Blocks(css=CSS, theme="soft") as demo: | |
| gr.HTML(TITLE) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.", | |
| label="System Prompt", | |
| lines=5, | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.8, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=128, | |
| maximum=8192, | |
| step=1, | |
| value= 2500, | |
| label="Max new tokens", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| label="top_p", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=20, | |
| label="top_k", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| step=0.1, | |
| value=1.1, | |
| label="Repetition penalty", | |
| render=False, | |
| ), | |
| ], | |
| examples=[ | |
| ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], | |
| ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], | |
| ["Tell me a random fun fact about the Roman Empire."], | |
| ["Show me a code snippet of a website's sticky header in CSS and JavaScript."], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |