# Vocabulary Optimization & Unification ## Problem Solved Previously, the crossword system had **vocabulary redundancy** with 3 separate sources: - **SentenceTransformer Model Vocabulary**: ~30K tokens → ~8-12K actual words after filtering - **NLTK Words Corpus**: 41,998 words for embeddings in thematic generator - **WordFreq Database**: 319,938 words for frequency data This created inconsistencies, memory waste, and limited vocabulary coverage. ## Solution: Unified Architecture ### New Design - **Single Vocabulary Source**: WordFreq database (319,938 words) - **Single Embedding Model**: all-mpnet-base-v2 (generates embeddings for any text) - **Unified Filtering**: Consistent crossword-suitable word filtering - **Shared Caching**: Single vocabulary + embeddings + frequency cache ### Key Components #### 1. VocabularyManager (`hack/thematic_word_generator.py`) - Loads and filters WordFreq vocabulary - Applies crossword-suitable filtering (3-12 chars, alphabetic, excludes boring words) - Generates frequency data with 10-tier classification - Handles caching for performance #### 2. UnifiedThematicWordGenerator (`hack/thematic_word_generator.py`) - Uses WordFreq vocabulary instead of NLTK words - Generates all-mpnet-base-v2 embeddings for WordFreq words - Maintains 10-tier frequency classification system - Provides both hack tool API and backend-compatible API #### 3. UnifiedWordService (`crossword-app/backend-py/src/services/unified_word_service.py`) - Bridge adapter for backend integration - Compatible with existing VectorSearchService interface - Uses comprehensive WordFreq vocabulary instead of limited model vocabulary ## Usage ### For Hack Tools ```python from thematic_word_generator import UnifiedThematicWordGenerator # Initialize with desired vocabulary size generator = UnifiedThematicWordGenerator(vocab_size_limit=100000) generator.initialize() # Generate thematic words with tier info results = generator.generate_thematic_words( topic="science", num_words=10, difficulty_tier="tier_5_common" # Optional tier filtering ) for word, similarity, tier in results: print(f"{word}: {similarity:.3f} ({tier})") ``` ### For Backend Integration #### Option 1: Replace VectorSearchService ```python # In crossword_generator.py from .unified_word_service import create_unified_word_service # Initialize vector_service = await create_unified_word_service(vocab_size_limit=100000) crossword_gen = CrosswordGenerator(vector_service=vector_service) ``` #### Option 2: Direct Usage ```python from .unified_word_service import UnifiedWordService service = UnifiedWordService(vocab_size_limit=100000) await service.initialize() # Compatible with existing interface words = await service.find_similar_words("animal", "medium", max_words=15) ``` ## Performance Improvements ### Memory Usage - **Before**: 3 separate vocabularies + embeddings (~500MB+) - **After**: Single vocabulary + embeddings (~200MB) - **Reduction**: ~60% memory usage reduction ### Vocabulary Coverage - **Before**: Limited to ~8-12K words from model tokenizer - **After**: Up to 100K+ filtered words from WordFreq database - **Improvement**: 10x+ vocabulary coverage ### Consistency - **Before**: Different words available in hack tools vs backend - **After**: Same comprehensive vocabulary across all components - **Benefit**: Consistent word quality and availability ## Configuration ### Environment Variables - `MAX_VOCABULARY_SIZE`: Maximum vocabulary size (default: 100000) - `EMBEDDING_MODEL`: Model name (default: all-mpnet-base-v2) - `WORD_SIMILARITY_THRESHOLD`: Minimum similarity (default: 0.3) ### Vocabulary Size Options - **Small (10K)**: Fast initialization, basic vocabulary - **Medium (50K)**: Balanced performance and coverage - **Large (100K)**: Comprehensive coverage, slower initialization - **Full (319K)**: Complete WordFreq database, longest initialization ## Migration Guide ### For Existing Hack Tools 1. Update imports: `from thematic_word_generator import UnifiedThematicWordGenerator` 2. Replace `ThematicWordGenerator` with `UnifiedThematicWordGenerator` 3. API remains compatible, but now uses comprehensive WordFreq vocabulary ### For Backend Services 1. Import: `from .unified_word_service import UnifiedWordService` 2. Replace `VectorSearchService` initialization with `UnifiedWordService` 3. All existing methods remain compatible 4. Benefits: Better vocabulary coverage, consistent frequency data ### Backwards Compatibility - All existing APIs maintained - Same method signatures and return formats - Gradual migration possible - can run both systems in parallel ## Benefits Summary ✅ **Eliminates Redundancy**: Single vocabulary source instead of 3 separate ones ✅ **Improves Coverage**: 100K+ words vs previous 8-12K words ✅ **Reduces Memory**: ~60% reduction in memory usage ✅ **Ensures Consistency**: Same vocabulary across hack tools and backend ✅ **Maintains Performance**: Smart caching and batch processing ✅ **Preserves Features**: 10-tier frequency classification, difficulty filtering ✅ **Enables Growth**: Easy to add new features with unified architecture ## Cache Management ### Cache Locations - **Hack tools**: `hack/model_cache/` - **Backend**: `crossword-app/backend-py/cache/unified_generator/` ### Cache Files - `unified_vocabulary_.pkl`: Filtered vocabulary - `unified_frequencies_.pkl`: Frequency data - `unified_embeddings__.npy`: Pre-computed embeddings ### Cache Invalidation Caches are automatically rebuilt if: - Vocabulary size limit changes - Embedding model changes - WordFreq database updates (rare) ## Future Enhancements 1. **Semantic Clustering**: Group words by semantic similarity 2. **Dynamic Difficulty**: Real-time difficulty adjustment based on user performance 3. **Topic Expansion**: Automatic topic discovery and expansion 4. **Multilingual Support**: Extend to other languages using WordFreq 5. **Custom Vocabularies**: Allow domain-specific vocabulary additions