# install custom package import os os.system("pip install --no-deps ./tahoex-0.1.2-py3-none-any.whl") # imports import gc import json import uuid import time import tempfile import torch import gradio as gr import anndata as ad import pandas as pd import numpy as np import scanpy as sc import pyarrow as pa import pyarrow.parquet as pq import matplotlib.pyplot as plt from scipy import sparse from pathlib import Path from composer import Trainer, Callback from tahoex.model.model import ComposerTX from tahoex.data import CountDataset, DataCollator # hardcoded configuration EMB_KEY = "X_tx1-70m" APP_TITLE = "Tx1-70M Embeddings" APP_DESC = """ Upload an AnnData, compute Tx1-70M embeddings, preview a UMAP, and download the results. **Limits:** Files up to 5GB. If an AnnData contains more than 100K cells, embeddings will be computed **only for the first 100K cells**. """ # set up directories OUTPUT_DIR = Path("./outputs") OUTPUT_DIR.mkdir(exist_ok=True, parents=True) # load symbol-to-ensembl mapping with open("./symbol-to-ensembl.json", "r") as f: SYMBOL_TO_ENSEMBL = json.load(f) SYMBOL_TO_ENSEMBL_UCASE = {str(k).upper(): v for k, v in SYMBOL_TO_ENSEMBL.items()} # set up parquet outputs PARQUET_INDEX_COL = "index" PARQUET_EMB_COL = "tx1-70m" # constants for UMAP recoloring OBS_NONE_OPTION = "(none)" MAX_CATEGORIES = 50 # constants for .var preview VAR_PREVIEW_MAX = 5 # helper to select layer from AnnData def _pick_layer(adata, layer_name): X = adata.layers[layer_name] if layer_name else adata.X if sparse.issparse(X): X = X.tocsr() elif not isinstance(X, np.ndarray): X = np.asarray(X) if hasattr(X, "dtype") and X.dtype != np.float32: X = X.astype(np.float32, copy=False) return X # helper to summarize DataFrame column choices def _summarize_columns(df, preview_max=VAR_PREVIEW_MAX): choices = [] for col in df.columns: s = df[col] dtype = str(s.dtype) ex = pd.Series(s.astype(object)).dropna().astype(str).head(preview_max).tolist() preview = ", ".join(ex) if ex else "(no values)" if len(preview) > 47: preview = preview[:47] + "..." elif preview != "(no values)": preview = preview + "..." lbl = f"{col} · {dtype} · {preview}" choices.append((lbl, col)) return choices # helper to compute UMAP from given embeddings def _compute_umap_from_emb(emb): ad_umap = ad.AnnData(X=emb) sc.pp.neighbors(ad_umap) sc.tl.umap(ad_umap) coords = np.asarray(ad_umap.obsm["X_umap"]) del ad_umap return coords # helper to generate unique filenames in output directory def _unique_output(name): stem, ext = name.rsplit(".", 1) return OUTPUT_DIR / f"{stem}_{int(time.time())}_{uuid.uuid4().hex[:6]}.{ext}" # helper to save outputs def _save_outputs(adata, emb, chunk=20000): # build schema d_model = int(emb.shape[1]) schema = pa.schema([ pa.field(PARQUET_INDEX_COL, pa.string()), pa.field(PARQUET_EMB_COL, pa.list_(pa.float32(), d_model)), ]) # save parquet in chunks parquet_path = _unique_output("embs.parquet") writer = None try: for i in range(0, emb.shape[0], chunk): sl = slice(i, min(i+chunk, emb.shape[0])) idx_arr = pa.array(adata.obs_names[sl].astype(str).tolist(), type=pa.string()) flat = pa.array(emb[sl].reshape(-1), type=pa.float32()) emb_arr = pa.FixedSizeListArray.from_arrays(flat, d_model) batch = pa.record_batch([idx_arr, emb_arr], schema=schema) if writer is None: writer = pq.ParquetWriter(parquet_path, schema, compression="zstd", use_dictionary=True) writer.write_table(pa.Table.from_batches([batch])) finally: if writer is not None: writer.close() # save AnnData out_h5ad = _unique_output("adata_with_embs.h5ad") adata.write(out_h5ad) # return paths return parquet_path, out_h5ad # refresh dropdowns given a file object def ensure_dropdowns(fileobj): if fileobj is None: return ( gr.Dropdown(choices=[""], value=""), gr.Dropdown(choices=[], value=None) ) try: adata = sc.read_h5ad(fileobj.name, backed="r") adata.var = adata.var.reset_index(drop=False, names="index") layers = list(adata.layers.keys()) var_choices = _summarize_columns(adata.var) del adata gc.collect() default_var = var_choices[0][1] if var_choices else None return ( gr.Dropdown(choices=[""] + layers, value=""), gr.Dropdown(choices=var_choices, value=default_var) ) except Exception: return ( gr.Dropdown(choices=[""], value=""), gr.Dropdown(choices=[], value=None) ) # draw an uncolored UMAP def draw_uncolored(coords, title_suffix=None): fig = plt.figure(figsize=(5.5, 5.0)) ax = fig.add_subplot(111) ax.scatter(coords[:, 0], coords[:, 1], s=3, alpha=0.75) ttl = "Tx1-70M embeddings" if title_suffix: ttl += f" ({title_suffix})" ax.set_title(ttl) ax.set_xlabel("UMAP1") ax.set_ylabel("UMAP2") fig.tight_layout() out_png = _unique_output("umap.png") fig.savefig(out_png, dpi=160) plt.close(fig) return out_png # recolor UMAP given obs column def recolor_umap(obs_col, coords, h5ad_path): # make sure inputs are valid if coords is None or h5ad_path is None: raise gr.Error("Run embeddings first to compute UMAP.") coords = np.asarray(coords) if coords.ndim != 2 or coords.shape[1] != 2: raise gr.Error(f"UMAP coordinates look wrong, shape = {coords.shape}. Please recompute.") # handle no-coloring option if obs_col == OBS_NONE_OPTION: out_png = draw_uncolored(coords) return str(out_png.resolve()) # read obs column try: adata = sc.read_h5ad(h5ad_path, backed="r") series = adata.obs[obs_col] n = series.shape[0] if n != coords.shape[0]: gr.Warning(f"Length mismatch: obs has {n} rows, UMAP has {coords.shape[0]}. Using minimum length.") m = min(n, coords.shape[0]) series = series.iloc[:m] coords = coords[:m] except Exception as e: raise gr.Error(f"Failed to read .obs column '{obs_col}': {e}") # sanitize values s = series.copy() numeric_candidate = pd.to_numeric(s, errors="coerce") n_numeric_valid = int(np.isfinite(numeric_candidate.astype(float)).sum()) n_total = int(len(s)) # plot numerical labels if n_numeric_valid >= max(5, 0.5 * n_total): # check for sufficient numeric values or constant values vals = pd.to_numeric(s, errors="coerce").astype(float).values mask = np.isfinite(vals) if mask.sum() < max(10, 0.1 * len(vals)): gr.Warning(f"Too few finite numeric values in '{obs_col}'. Showing uncolored UMAP.") return draw_uncolored(f"{obs_col}: insufficient numeric values") if np.nanmax(vals[mask]) == np.nanmin(vals[mask]): gr.Info(f"'{obs_col}' is constant. Showing uncolored UMAP.") return draw_uncolored(f"{obs_col}: constant") # draw with colorbar fig = plt.figure(figsize=(5.5, 5.0)) ax = fig.add_subplot(111) scatt = ax.scatter(coords[mask, 0], coords[mask, 1], s=3, alpha=0.85, c=vals[mask]) fig.colorbar(scatt, ax=ax, shrink=0.7, label=obs_col) if (~mask).any(): ax.scatter(coords[~mask, 0], coords[~mask, 1], s=3, alpha=0.25) ax.set_title(f"Tx1-70M embeddings colored by {obs_col}") ax.set_xlabel("UMAP1") ax.set_ylabel("UMAP2") fig.tight_layout() out_png = _unique_output("umap.png") fig.savefig(out_png, dpi=160) plt.close(fig) return str(out_png.resolve()) # categorical coloring else: # check for too many or too few categories cats = s.astype(str).fillna("NA").values uniq = pd.unique(cats) n_cat = len(uniq) if n_cat > MAX_CATEGORIES: gr.Warning(f"'{obs_col}' has too many categories. Showing uncolored UMAP.") out_png = draw_uncolored(coords, f"{obs_col}: {n_cat} categories") return str(out_png.resolve()) if n_cat <= 1: gr.Info(f"'{obs_col}' has a single category. Showing uncolored UMAP.") out_png = draw_uncolored(coords, f"{obs_col}: 1 category") return str(out_png.resolve()) # draw with legend fig = plt.figure(figsize=(5.5, 5.0)) ax = fig.add_subplot(111) for cat in sorted(map(str, uniq)): mask = (cats == cat) ax.scatter(coords[mask, 0], coords[mask, 1], s=3, alpha=0.85, label=cat) ax.legend(markerscale=3, fontsize=8, loc="best", frameon=True, ncol=1) ax.set_title(f"Tx1-70M embeddings colored by {obs_col}") ax.set_xlabel("UMAP1") ax.set_ylabel("UMAP2") fig.tight_layout() out_png = _unique_output("umap.png") fig.savefig(out_png, dpi=160) plt.close(fig) return str(out_png.resolve()) # custom callback to report progress to Gradio class GradioProgressCallback(Callback): def __init__(self, progress, total_batches, start=0.25, end=0.75): self.progress = progress self.total = max(1, int(total_batches)) self.seen = 0 self.start = start self.end = end def predict_batch_end(self, state, logger): self.seen += 1 frac = self.start + (self.end - self.start) * (self.seen / self.total) self.progress(frac, desc=f"computing Tx1 embeddings ({self.seen} / {self.total} batches)") # compute embeddings def _embed(adata_bytes, layer_name, feature_col, use_symbols, progress): # retrieve AnnData from bytes progress(0.05, desc="loading AnnData") with tempfile.TemporaryDirectory() as td: # persist to a temporary file fpath = Path(td) / "input.h5ad" with open(fpath, "wb") as f: f.write(adata_bytes) # read in backed mode first adata_backed = sc.read_h5ad(str(fpath), backed="r") limit = min(adata_backed.n_obs, 100000) if adata_backed.n_obs > 100000: gr.Warning("AnnData has >100K cells. Loading only the first 100K cells.") # load into memory, subsetting if needed adata = adata_backed[:limit, :].to_memory() adata.var = adata.var.reset_index(drop=False, names="index") try: adata_backed.file.close() except Exception: pass # free up space del adata_backed gc.collect() # validate layer if layer_name and layer_name not in adata.layers: raise gr.Error(f"Layer '{layer_name}' not found. Available: {list(adata.layers.keys())}") # validate feature column if feature_col not in adata.var.columns: raise gr.Error(f"Feature column '{feature_col}' not found. Available: {list(adata.var.columns)}") # symbol conversion if requested if use_symbols: # try direct mapping first col = adata.var[feature_col].astype(str).str.strip() direct = col.map(SYMBOL_TO_ENSEMBL) # try case-insensitive fallback need_fallback = direct.isna() if need_fallback.any(): upper_mapped = col[need_fallback].str.upper().map(SYMBOL_TO_ENSEMBL_UCASE) direct.loc[need_fallback] = upper_mapped # if any symbols map to multiple, warn and take the first ambiguous_mask = direct.apply(lambda x: isinstance(x, (list, tuple)) and len(x) > 1 if pd.notna(x) else False) n_ambiguous = int(ambiguous_mask.sum()) if n_ambiguous > 0: gr.Warning(f"{n_ambiguous} symbol(s) mapped to multiple Ensembl IDs; selecting first mappings.") direct.loc[ambiguous_mask] = direct.loc[ambiguous_mask].apply(lambda x: x[0]) # convert everything to string direct = direct.apply(lambda x: x[0] if isinstance(x, (list, tuple)) and len(x) >= 1 else x) # report mapping quality n_mapped = int(direct.notna().sum()) n_total = int(len(direct)) gr.Info(f"Gene symbol conversion: mapped {n_mapped} / {n_total} ({n_mapped / max(1, n_total):.1%}).") if n_mapped == 0: raise gr.Error("Could not map any gene symbols to Ensembl IDs. Please check the column or turn off the symbol checkbox.") # create a new column with converted IDs adata.var["ensembl_from_symbol"] = direct.astype(str) # drop unmapped rows before = adata.n_vars adata = adata[:, adata.var["ensembl_from_symbol"].notna()].copy() after = adata.n_vars if after < before: gr.Warning(f"Dropped {before - after} genes that did not map.") # handle duplicate Ensembl IDs by keeping the first occurrence dup_mask = adata.var.duplicated(subset=["ensembl_from_symbol"], keep="first") n_dups = int(dup_mask.sum()) if n_dups > 0: gr.Warning(f"Found {n_dups} duplicate Ensembl IDs after mapping; keeping the first occurrence.") adata = adata[:, ~dup_mask].copy() # from here on, use the converted column as the gene id key feature_col = "ensembl_from_symbol" # check for Ensembl IDs in feature column if not adata.var[feature_col].str.startswith("ENSG").any(): raise gr.Error(f"Feature column '{feature_col}' does not appear to contain human Ensembl gene IDs. If the column contains gene symbols, use the checkbox.") # load model progress(0.15, desc="loading model") model, vocab, model_config, collator_config = ComposerTX.from_hf( "tahoebio/TahoeX1", "70m", return_gene_embeddings=False ) # prepare AnnData progress(0.20, desc="preparing AnnData") gene_id_key = feature_col adata.var["id_in_vocab"] = [vocab[gene] if gene in vocab else -1 for gene in adata.var[gene_id_key]] gene_ids_in_vocab = np.array(adata.var["id_in_vocab"]) num_matches = np.sum(gene_ids_in_vocab >= 0) frac_matches = num_matches / len(gene_ids_in_vocab) gr.Info(f"Matched {num_matches} / {len(gene_ids_in_vocab)} genes to vocabulary.") if frac_matches < 0.5: gr.Warning(f"Only {frac_matches:.1%} of genes matched to vocabulary. Embeddings may be poor.") adata = adata[:, adata.var["id_in_vocab"] >= 0] genes = adata.var[gene_id_key].tolist() gene_ids = np.array([vocab[gene] for gene in genes], dtype=int) # create data loader progress(0.22, desc="creating data loader") count_matrix = _pick_layer(adata, layer_name) dataset = CountDataset( count_matrix, gene_ids, cls_token_id=vocab[""], pad_value=collator_config["pad_value"], ) collate_fn = DataCollator( vocab=vocab, drug_to_id_path=collator_config.get("drug_to_id_path", None), do_padding=collator_config.get("do_padding", True), unexp_padding=False, pad_token_id=collator_config.pad_token_id, pad_value=collator_config.pad_value, do_mlm=False, do_binning=collator_config.get("do_binning", True), log_transform=collator_config.get("log_transform", False), target_sum=collator_config.get("target_sum"), mlm_probability=collator_config.mlm_probability, mask_value=collator_config.mask_value, max_length=2048, sampling=collator_config.sampling, num_bins=collator_config.get("num_bins", 51), right_binning=collator_config.get("right_binning", False), keep_first_n_tokens=collator_config.get("keep_first_n_tokens", 1), use_chem_token=collator_config.get("use_chem_token", False), ) loader = torch.utils.data.DataLoader( dataset, batch_size=128, collate_fn=collate_fn, shuffle=False, drop_last=False, num_workers=0, pin_memory=False ) # create trainer cb = GradioProgressCallback(progress, total_batches=len(loader)) trainer = Trainer( model=model, device="gpu", device_train_microbatch_size="auto", callbacks=[cb] ) # run inference predictions = trainer.predict(loader, return_outputs=True) # aggregate embeddings progress(0.78, desc="aggregating embeddings") n_cells = len(dataset) d_model = model_config.d_model cell_array = np.empty((n_cells, d_model), dtype=np.float32) write_ptr = 0 for out in predictions: batch_emb = out["cell_emb"].detach().to("cpu").float().numpy() bsz = batch_emb.shape[0] cell_array[write_ptr:write_ptr+bsz] = batch_emb write_ptr += bsz # normalize norms = np.linalg.norm(cell_array, axis=1, keepdims=True) np.divide(cell_array, np.clip(norms, 1e-8, None), out=cell_array) # attach to AnnData adata.obsm[EMB_KEY] = cell_array # hand back small metadata for UI refresh layers = list(adata.layers.keys()) var_choices = _summarize_columns(adata.var) obs_choices = _summarize_columns(adata.obs) # serialize AnnData back to bytes for CPU side with tempfile.TemporaryDirectory() as td2: outp = Path(td2) / "tmp.h5ad" adata.write(outp, compression="gzip") with open(outp, "rb") as f: adata_persisted = f.read() # free up space del adata torch.cuda.empty_cache() gc.collect() # return embeddings and metadata return cell_array, layers, var_choices, obs_choices, adata_persisted # processing pipeline given user inputs def run_pipeline(fileobj, layer_choice, var_choice, use_symbols, progress=gr.Progress(track_tqdm=False)): # make sure user inputs exist if fileobj is None: raise gr.Error("Please upload an .h5ad file.") if var_choice is None: raise gr.Error("Please select a .var column.") # read upload file to bytes so the GPU function can load it progress(0.02, desc="reading AnnData") with open(fileobj.name, "rb") as f: adata_bytes = f.read() # compute embeddings on GPU E, layers, var_choices, obs_choices, adata_with_emb_bytes = _embed( adata_bytes=adata_bytes, layer_name=(None if layer_choice in [None, "", ""] else layer_choice), feature_col=(None if var_choice in [None, ""] else var_choice), use_symbols=use_symbols, progress=progress ) # rebuild AnnData on CPU with tempfile.TemporaryDirectory() as td: tmp_in = Path(td) / "with_emb.h5ad" with open(tmp_in, "wb") as f: f.write(adata_with_emb_bytes) adata = sc.read_h5ad(tmp_in, backed=None) # compute UMAP progress(0.80, desc="computing UMAP") coords = _compute_umap_from_emb(E) adata.obsm["X_umap"] = coords # plot UMAP (no coloring by default) progress(0.90, desc="plotting UMAP") fig = plt.figure(figsize=(5.5, 5.0)) ax = fig.add_subplot(111) ax.scatter(coords[:, 0], coords[:, 1], s=3, alpha=0.75) ax.set_title("Tx1-70M embeddings") ax.set_xlabel("UMAP1") ax.set_ylabel("UMAP2") fig.tight_layout() umap_png = _unique_output("umap.png") fig.savefig(umap_png, dpi=160) plt.close(fig) # enable coloring dropdown update_obs_dd = gr.Dropdown(choices=[OBS_NONE_OPTION] + obs_choices, value=OBS_NONE_OPTION, interactive=True) # save other outputs and return paths progress(0.95, desc="saving outputs") parquet_path, h5ad_path = _save_outputs(adata, E) progress(1.00, desc="finished!") return str(umap_png.resolve()), str(parquet_path.resolve()), str(h5ad_path.resolve()), [""] + layers, var_choices, update_obs_dd, coords, str(h5ad_path.resolve()) # specify app layout css = """ div#tahoe-logo { margin-top: 10px; margin-bottom: 10px; } #logo-light {display: none;} @media (prefers-color-scheme: dark) { #logo-dark {display: none;} #logo-light {display: block;} } """ with gr.Blocks(title=APP_TITLE, css=css) as demo: # state variables to store UMAP coordinates and AnnData path coords_state = gr.State() h5ad_state = gr.State() # header with gr.Row(elem_id="tahoe-logo", equal_height=True): logo_light = gr.Image( value="tahoe-white-logo.png", height=50, show_label=False, container=False, interactive=False, elem_id="logo-light", show_share_button=False, show_fullscreen_button=False, show_download_button=False, scale=0 ) logo_dark = gr.Image( value="tahoe-navy-logo.png", height=50, show_label=False, container=False, interactive=False, elem_id="logo-dark", show_share_button=False, show_fullscreen_button=False, show_download_button=False, scale=0 ) gr.Markdown(f"# {APP_TITLE}\n{APP_DESC}") # file upload block f_in = gr.File(label="Upload .h5ad", file_types=[".h5ad"], type="filepath") # dropdown block with gr.Row(equal_height=True): layer_dd = gr.Dropdown(choices=[""], value="", label="Layer to use (default: .X)", scale=1) with gr.Column(scale=1): var_dd = gr.Dropdown(choices=[], value=None, label="Name of .var column with Ensembl gene IDs (or gene symbols)") use_symbols_chk = gr.Checkbox(label="Selected .var column contains gene symbols (attempt conversion to Ensembl IDs)", value=False) # run button run_btn = gr.Button("Compute Embeddings + UMAP", variant="primary") # UMAP preview block with gr.Row(): umap_img = gr.Image(label="UMAP preview", interactive=False) # UMAP coloring block with gr.Row(): obs_dd = gr.Dropdown(choices=[], value=None, label="Name of .obs column to color UMAP by", interactive=False) # file download block with gr.Row(): emb_parquet = gr.DownloadButton(label="Download embeddings (.parquet)") adata_with_emb = gr.DownloadButton(label="Download AnnData with embeddings in .obsm (.h5ad)") # when file changes, refresh dropdowns f_in.change( ensure_dropdowns, inputs=[f_in], outputs=[layer_dd, var_dd], queue=False ) # run pipeline on button click evt = run_btn.click( run_pipeline, inputs=[f_in, layer_dd, var_dd, use_symbols_chk], outputs=[umap_img, emb_parquet, adata_with_emb, layer_dd, var_dd, obs_dd, coords_state, h5ad_state], queue=True ) # refresh dropdowns after run evt.then( ensure_dropdowns, inputs=[f_in], outputs=[layer_dd, var_dd], queue=False ) # wire UMAP recoloring obs_dd.change(recolor_umap, inputs=[obs_dd, coords_state, h5ad_state], outputs=[umap_img], queue=False) if __name__ == "__main__": demo.launch(allowed_paths=[str(OUTPUT_DIR.resolve())], max_file_size="5gb")