Spaces:
Sleeping
Sleeping
| import os | |
| from flask import Flask, render_template, request, jsonify | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| app = Flask(__name__) | |
| # Define cache directory | |
| cache_dir = "/app/cache" | |
| os.environ["HF_HOME"] = cache_dir | |
| # Load Myanmarsar-GPT (1.42B params) from Hugging Face | |
| MODEL_NAME = "simbolo-ai/Myanmarsar-GPT" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=cache_dir) | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, cache_dir=cache_dir) | |
| # Function to generate chatbot responses | |
| def generate_response(prompt): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| with torch.no_grad(): | |
| output = model.generate(**inputs, max_length=200) | |
| return tokenizer.decode(output[0], skip_special_tokens=True) | |
| # Serve the HTML page | |
| def home(): | |
| return render_template("index.html") | |
| # API route for chatbot responses | |
| def chat(): | |
| try: | |
| if not request.is_json: | |
| print("Error: Request is not JSON") | |
| return jsonify({"error": "Request must be JSON"}), 415 | |
| data = request.get_json() | |
| user_message = data.get("message", "") | |
| if not user_message: | |
| print("Error: No message received") | |
| return jsonify({"error": "No message provided"}), 400 | |
| print(f"Received message: {user_message}") | |
| bot_reply = generate_response(user_message) | |
| print(f"AI response: {bot_reply}") | |
| return jsonify({"reply": bot_reply}) | |
| except Exception as e: | |
| print(f"Error processing request: {e}") | |
| return jsonify({"error": str(e)}), 500 | |
| if __name__ == "__main__": | |
| port = int(os.environ.get("PORT", 7860)) # Default to 7860, but use any assigned port | |
| app.run(host="0.0.0.0", port=port) |