Spaces:
Sleeping
Sleeping
sync to remote
Browse files- app.py +76 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pickle
|
| 5 |
+
import os
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
| 8 |
+
|
| 9 |
+
# Hugging Face repo details
|
| 10 |
+
HF_REPO_ID = "wvsu-dti-aidev-team/customer_churn_logres_model"
|
| 11 |
+
MODEL_FILENAME = "customer_churn_logres_model.pkl"
|
| 12 |
+
|
| 13 |
+
# Download and load the trained model
|
| 14 |
+
st.write("## Telco Customer Churn Prediction")
|
| 15 |
+
|
| 16 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 17 |
+
if not hf_token:
|
| 18 |
+
st.error("HF_TOKEN environment variable not set. Please configure it before proceeding.")
|
| 19 |
+
else:
|
| 20 |
+
with st.spinner("Downloading the model from Hugging Face..."):
|
| 21 |
+
model_path = hf_hub_download(repo_id=HF_REPO_ID, filename=MODEL_FILENAME, token=hf_token)
|
| 22 |
+
|
| 23 |
+
# Load the model
|
| 24 |
+
with open(model_path, "rb") as f:
|
| 25 |
+
model = pickle.load(f)
|
| 26 |
+
|
| 27 |
+
st.success("Model loaded successfully!")
|
| 28 |
+
|
| 29 |
+
# Define feature names (from dataset)
|
| 30 |
+
feature_names = [
|
| 31 |
+
"gender", "SeniorCitizen", "Partner", "Dependents", "tenure",
|
| 32 |
+
"PhoneService", "MultipleLines", "InternetService", "OnlineSecurity",
|
| 33 |
+
"OnlineBackup", "DeviceProtection", "TechSupport", "StreamingTV",
|
| 34 |
+
"StreamingMovies", "Contract", "PaperlessBilling", "PaymentMethod",
|
| 35 |
+
"MonthlyCharges", "TotalCharges"
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
# Define categorical features for encoding
|
| 39 |
+
categorical_features = ["gender", "InternetService", "Contract", "PaymentMethod"]
|
| 40 |
+
|
| 41 |
+
# Create input fields for each feature
|
| 42 |
+
st.write("### Enter Customer Details")
|
| 43 |
+
|
| 44 |
+
user_input = {}
|
| 45 |
+
for feature in feature_names:
|
| 46 |
+
if feature in categorical_features:
|
| 47 |
+
user_input[feature] = st.selectbox(f"{feature}:", ["DSL", "Fiber optic", "No"])
|
| 48 |
+
elif feature in ["SeniorCitizen", "Partner", "Dependents", "PhoneService", "MultipleLines",
|
| 49 |
+
"OnlineSecurity", "OnlineBackup", "DeviceProtection", "TechSupport",
|
| 50 |
+
"StreamingTV", "StreamingMovies", "PaperlessBilling"]:
|
| 51 |
+
user_input[feature] = st.radio(f"{feature}:", [0, 1])
|
| 52 |
+
else:
|
| 53 |
+
user_input[feature] = st.number_input(f"{feature}:", min_value=0.0, step=0.1)
|
| 54 |
+
|
| 55 |
+
# Convert input to DataFrame
|
| 56 |
+
input_df = pd.DataFrame([user_input])
|
| 57 |
+
|
| 58 |
+
# Encode categorical features using LabelEncoder
|
| 59 |
+
label_encoders = {}
|
| 60 |
+
for feature in categorical_features:
|
| 61 |
+
le = LabelEncoder()
|
| 62 |
+
input_df[feature] = le.fit_transform(input_df[feature])
|
| 63 |
+
label_encoders[feature] = le
|
| 64 |
+
|
| 65 |
+
# Preprocess input: Apply scaling
|
| 66 |
+
scaler = StandardScaler()
|
| 67 |
+
input_scaled = scaler.fit_transform(input_df)
|
| 68 |
+
|
| 69 |
+
# Predict churn
|
| 70 |
+
if st.button("Predict Customer Churn"):
|
| 71 |
+
prediction = model.predict(input_scaled)[0]
|
| 72 |
+
st.write("## Prediction:")
|
| 73 |
+
if prediction == 1:
|
| 74 |
+
st.error("⚠️ This customer is likely to churn!")
|
| 75 |
+
else:
|
| 76 |
+
st.success("✅ This customer is likely to stay.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
pandas
|
| 3 |
+
numpy
|
| 4 |
+
scikit-learn
|
| 5 |
+
huggingface_hub
|