Create configuration_nllb_clip.py
Browse files- configuration_nllb_clip.py +273 -0
configuration_nllb_clip.py
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" NLLB-CLIP model configuration"""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
from collections import OrderedDict
|
| 5 |
+
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
| 6 |
+
|
| 7 |
+
if TYPE_CHECKING:
|
| 8 |
+
from transformers.processing_utils import ProcessorMixin
|
| 9 |
+
from transformers.utils import TensorType
|
| 10 |
+
|
| 11 |
+
from transformers import CLIPVisionConfig
|
| 12 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 13 |
+
from transformers.onnx import OnnxConfig
|
| 14 |
+
from transformers.utils import logging
|
| 15 |
+
|
| 16 |
+
logger = logging.get_logger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class NLLBCLIPTextConfig(PretrainedConfig):
|
| 20 |
+
model_type = "clip_text_model"
|
| 21 |
+
attribute_map = {
|
| 22 |
+
"num_attention_heads": "encoder_attention_heads",
|
| 23 |
+
"hidden_size": "d_model",
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
vocab_size=128112,
|
| 29 |
+
max_position_embeddings=1024,
|
| 30 |
+
encoder_layers=12,
|
| 31 |
+
encoder_ffn_dim=4096,
|
| 32 |
+
encoder_attention_heads=16,
|
| 33 |
+
encoder_layerdrop=0.05,
|
| 34 |
+
use_cache=True,
|
| 35 |
+
activation_function="relu",
|
| 36 |
+
d_model=1024,
|
| 37 |
+
dropout=0.1,
|
| 38 |
+
attention_dropout=0.1,
|
| 39 |
+
activation_dropout=0.0,
|
| 40 |
+
init_std=0.02,
|
| 41 |
+
scale_embedding=True,
|
| 42 |
+
pad_token_id=1,
|
| 43 |
+
bos_token_id=0,
|
| 44 |
+
eos_token_id=2,
|
| 45 |
+
layer_norm_eps=1e-5,
|
| 46 |
+
**kwargs,
|
| 47 |
+
):
|
| 48 |
+
self.vocab_size = vocab_size
|
| 49 |
+
self.max_position_embeddings = max_position_embeddings
|
| 50 |
+
self.d_model = d_model
|
| 51 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
| 52 |
+
self.encoder_layers = encoder_layers
|
| 53 |
+
self.encoder_attention_heads = encoder_attention_heads
|
| 54 |
+
self.dropout = dropout
|
| 55 |
+
self.attention_dropout = attention_dropout
|
| 56 |
+
self.activation_dropout = activation_dropout
|
| 57 |
+
self.activation_function = activation_function
|
| 58 |
+
self.init_std = init_std
|
| 59 |
+
self.encoder_layerdrop = encoder_layerdrop
|
| 60 |
+
self.use_cache = use_cache
|
| 61 |
+
self.num_hidden_layers = encoder_layers
|
| 62 |
+
self.scale_embedding = scale_embedding
|
| 63 |
+
self.layer_norm_eps = layer_norm_eps
|
| 64 |
+
|
| 65 |
+
super().__init__(
|
| 66 |
+
pad_token_id=pad_token_id,
|
| 67 |
+
bos_token_id=bos_token_id,
|
| 68 |
+
eos_token_id=eos_token_id,
|
| 69 |
+
**kwargs,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
@classmethod
|
| 73 |
+
def from_pretrained(
|
| 74 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
| 75 |
+
) -> "PretrainedConfig":
|
| 76 |
+
config_dict, kwargs = cls.get_config_dict(
|
| 77 |
+
pretrained_model_name_or_path, **kwargs
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# get the vision config dict if we are loading from CLIPConfig
|
| 81 |
+
if config_dict.get("model_type") == "clip":
|
| 82 |
+
config_dict = config_dict["text_config"]
|
| 83 |
+
|
| 84 |
+
if (
|
| 85 |
+
"model_type" in config_dict
|
| 86 |
+
and hasattr(cls, "model_type")
|
| 87 |
+
and config_dict["model_type"] != cls.model_type
|
| 88 |
+
):
|
| 89 |
+
logger.warning(
|
| 90 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 91 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class NLLBCLIPConfig(PretrainedConfig):
|
| 98 |
+
model_type = "clip"
|
| 99 |
+
|
| 100 |
+
def __init__(
|
| 101 |
+
self,
|
| 102 |
+
text_config=None,
|
| 103 |
+
vision_config=None,
|
| 104 |
+
projection_dim=512,
|
| 105 |
+
logit_scale_init_value=2.6592,
|
| 106 |
+
**kwargs,
|
| 107 |
+
):
|
| 108 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
| 109 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
| 110 |
+
# of confusion!).
|
| 111 |
+
text_config_dict = kwargs.pop("text_config_dict", None)
|
| 112 |
+
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
| 113 |
+
|
| 114 |
+
super().__init__(**kwargs)
|
| 115 |
+
|
| 116 |
+
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
| 117 |
+
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
| 118 |
+
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
| 119 |
+
if text_config_dict is not None:
|
| 120 |
+
if text_config is None:
|
| 121 |
+
text_config = {}
|
| 122 |
+
|
| 123 |
+
# This is the complete result when using `text_config_dict`.
|
| 124 |
+
_text_config_dict = NLLBCLIPTextConfig(**text_config_dict).to_dict()
|
| 125 |
+
|
| 126 |
+
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
| 127 |
+
for key, value in _text_config_dict.items():
|
| 128 |
+
if (
|
| 129 |
+
key in text_config
|
| 130 |
+
and value != text_config[key]
|
| 131 |
+
and key not in ["transformers_version"]
|
| 132 |
+
):
|
| 133 |
+
# If specified in `text_config_dict`
|
| 134 |
+
if key in text_config_dict:
|
| 135 |
+
message = (
|
| 136 |
+
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
| 137 |
+
f'The value `text_config_dict["{key}"]` will be used instead.'
|
| 138 |
+
)
|
| 139 |
+
# If inferred from default argument values (just to be super careful)
|
| 140 |
+
else:
|
| 141 |
+
message = (
|
| 142 |
+
f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
|
| 143 |
+
f'value `text_config["{key}"]` will be overriden.'
|
| 144 |
+
)
|
| 145 |
+
logger.warning(message)
|
| 146 |
+
|
| 147 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
| 148 |
+
text_config.update(_text_config_dict)
|
| 149 |
+
|
| 150 |
+
if vision_config_dict is not None:
|
| 151 |
+
if vision_config is None:
|
| 152 |
+
vision_config = {}
|
| 153 |
+
|
| 154 |
+
# This is the complete result when using `vision_config_dict`.
|
| 155 |
+
_vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict()
|
| 156 |
+
# convert keys to string instead of integer
|
| 157 |
+
if "id2label" in _vision_config_dict:
|
| 158 |
+
_vision_config_dict["id2label"] = {
|
| 159 |
+
str(key): value
|
| 160 |
+
for key, value in _vision_config_dict["id2label"].items()
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
| 164 |
+
for key, value in _vision_config_dict.items():
|
| 165 |
+
if (
|
| 166 |
+
key in vision_config
|
| 167 |
+
and value != vision_config[key]
|
| 168 |
+
and key not in ["transformers_version"]
|
| 169 |
+
):
|
| 170 |
+
# If specified in `vision_config_dict`
|
| 171 |
+
if key in vision_config_dict:
|
| 172 |
+
message = (
|
| 173 |
+
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
| 174 |
+
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
| 175 |
+
)
|
| 176 |
+
# If inferred from default argument values (just to be super careful)
|
| 177 |
+
else:
|
| 178 |
+
message = (
|
| 179 |
+
f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
|
| 180 |
+
f'The value `vision_config["{key}"]` will be overriden.'
|
| 181 |
+
)
|
| 182 |
+
logger.warning(message)
|
| 183 |
+
|
| 184 |
+
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
| 185 |
+
vision_config.update(_vision_config_dict)
|
| 186 |
+
|
| 187 |
+
if text_config is None:
|
| 188 |
+
text_config = {}
|
| 189 |
+
logger.info(
|
| 190 |
+
"`text_config` is `None`. Initializing the `NLLBCLIPTextConfig` with default values."
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
if vision_config is None:
|
| 194 |
+
vision_config = {}
|
| 195 |
+
logger.info(
|
| 196 |
+
"`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values."
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
self.text_config = NLLBCLIPTextConfig(**text_config)
|
| 200 |
+
self.vision_config = CLIPVisionConfig(**vision_config)
|
| 201 |
+
|
| 202 |
+
self.projection_dim = projection_dim
|
| 203 |
+
self.logit_scale_init_value = logit_scale_init_value
|
| 204 |
+
self.initializer_factor = 1.0
|
| 205 |
+
|
| 206 |
+
@classmethod
|
| 207 |
+
def from_text_vision_configs(
|
| 208 |
+
cls, text_config: NLLBCLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs
|
| 209 |
+
):
|
| 210 |
+
r"""
|
| 211 |
+
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
|
| 212 |
+
configuration.
|
| 213 |
+
Returns:
|
| 214 |
+
[`CLIPConfig`]: An instance of a configuration object
|
| 215 |
+
"""
|
| 216 |
+
|
| 217 |
+
return cls(
|
| 218 |
+
text_config=text_config.to_dict(),
|
| 219 |
+
vision_config=vision_config.to_dict(),
|
| 220 |
+
**kwargs,
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class CLIPOnnxConfig(OnnxConfig):
|
| 225 |
+
@property
|
| 226 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 227 |
+
return OrderedDict(
|
| 228 |
+
[
|
| 229 |
+
("input_ids", {0: "batch", 1: "sequence"}),
|
| 230 |
+
("attention_mask", {0: "batch", 1: "sequence"}),
|
| 231 |
+
(
|
| 232 |
+
"pixel_values",
|
| 233 |
+
{0: "batch", 1: "num_channels", 2: "height", 3: "width"},
|
| 234 |
+
),
|
| 235 |
+
]
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
@property
|
| 239 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 240 |
+
return OrderedDict(
|
| 241 |
+
[
|
| 242 |
+
("logits_per_image", {0: "batch"}),
|
| 243 |
+
("logits_per_text", {0: "batch"}),
|
| 244 |
+
("text_embeds", {0: "batch"}),
|
| 245 |
+
("image_embeds", {0: "batch"}),
|
| 246 |
+
]
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
@property
|
| 250 |
+
def atol_for_validation(self) -> float:
|
| 251 |
+
return 1e-4
|
| 252 |
+
|
| 253 |
+
def generate_dummy_inputs(
|
| 254 |
+
self,
|
| 255 |
+
processor: "ProcessorMixin",
|
| 256 |
+
batch_size: int = -1,
|
| 257 |
+
seq_length: int = -1,
|
| 258 |
+
framework: Optional["TensorType"] = None,
|
| 259 |
+
) -> Mapping[str, Any]:
|
| 260 |
+
text_input_dict = super().generate_dummy_inputs(
|
| 261 |
+
processor.tokenizer,
|
| 262 |
+
batch_size=batch_size,
|
| 263 |
+
seq_length=seq_length,
|
| 264 |
+
framework=framework,
|
| 265 |
+
)
|
| 266 |
+
image_input_dict = super().generate_dummy_inputs(
|
| 267 |
+
processor.image_processor, batch_size=batch_size, framework=framework
|
| 268 |
+
)
|
| 269 |
+
return {**text_input_dict, **image_input_dict}
|
| 270 |
+
|
| 271 |
+
@property
|
| 272 |
+
def default_onnx_opset(self) -> int:
|
| 273 |
+
return 14
|