File size: 14,217 Bytes
bd0b2d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# backend/main.py
from urllib.parse import unquote
from typing import List, Optional
import uuid
import auth
# --- Standard Imports ---
from fastapi import FastAPI, Depends, HTTPException, UploadFile, File, Form
from pydantic import BaseModel
from database import engine, get_db, SessionLocal
from datetime import datetime

from sqlalchemy.orm import Session
from sqlalchemy.exc import OperationalError
from sqlalchemy import text
import os
import shutil # Important for file operations

from pipeline import highlight_text
from ml_qna import qna as generate_ml_answer

# from email_automation import download_attached_file
# import imaplib
from contextlib import asynccontextmanager
from pipeline import pipeline_process_pdf, load_all_models
from fastapi import BackgroundTasks

# --- Middleware Import ---
from fastapi.middleware.cors import CORSMiddleware

# --- Local Module Imports ---
import crud
import models
import schemas
from database import engine, get_db
from supabase_utils import upload_file_to_supabase

# This creates/updates the database tables in your Neon database
# based on your models.py file.
models.Base.metadata.create_all(bind=engine)

# --- (3) SETUP FOR LOADING MODELS ON STARTUP ---
# This dictionary will hold our loaded models so we don't reload them on every request
ml_models = {}

@asynccontextmanager
async def lifespan(app: FastAPI):
    # This code runs ONCE when the server starts up
    print("[INFO] Server starting up...")

    # --- ADD THIS ENTIRE BLOCK ---
    print("[INFO] Ensuring system 'automation_user' exists...")
    db = SessionLocal()
    try:
        # Check if the user already exists
        automation_user = crud.get_user(db, user_id="automation_user")
        if not automation_user:
            # If not, create it
            print("[INFO] 'automation_user' not found. Creating it now...")
            user_data = schemas.UserCreate(
                id="automation_user",
                name="Automation Service",
                department="System",
                role="system",
                password="automation_pass" # A placeholder password
            )
            crud.create_user(db, user_data)
            print("[INFO] 'automation_user' created successfully.")
        else:
            print("[INFO] 'automation_user' already exists.")
    finally:
        db.close() # Always close the database session
    # --- END OF BLOCK ---

    print("[INFO] Loading ML models...")
    tokenizer, model, nlp_model = load_all_models()
    ml_models["tokenizer"] = tokenizer
    ml_models["model"] = model
    ml_models["nlp_model"] = nlp_model
    print("[INFO] ML models loaded successfully and are ready.")

    yield

    ml_models.clear()
    print("[INFO] Server shutting down.")


# @asynccontextmanager
# async def lifespan(app: FastAPI):
#     # This code runs ONCE when the server starts up
#     print("[INFO] Server starting up. Loading ML models...")
#     tokenizer, model, nlp_model = load_all_models()
#     ml_models["tokenizer"] = tokenizer
#     ml_models["model"] = model
#     ml_models["nlp_model"] = nlp_model
#     print("[INFO] ML models loaded successfully and are ready.")
#     yield
#     # This code runs when the server shuts down
#     ml_models.clear()
#     print("[INFO] Server shutting down.")


app = FastAPI(lifespan=lifespan)

# This list now includes the new port your frontend is using
origins = [
    "http://localhost:3000",
    "http://127.0.0.1:3000",
    "https://kochi-metro-document.vercel.app",
    "http://localhost:3003", # <-- ADD THIS LINE
    "http://127.0.0.1:3003", # <-- And this one for good measure
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins, # Use the updated list
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# --- LOCAL UPLOAD DIRECTORY for temporary storage ---
UPLOAD_DIRECTORY = "uploads"
os.makedirs(UPLOAD_DIRECTORY, exist_ok=True)

# --- Diagnostic Endpoints ---
@app.get("/")
def read_root():
    return {"status": "ok", "service": "kmrl-backend-service"}

@app.get("/ping-db")
def ping_db(db: Session = Depends(get_db)):
    try:
        db.execute(text("SELECT 1"))
        return {"status": "ok", "message": "Database connection successful."}
    except OperationalError as e:
        raise HTTPException(
            status_code=500,
            detail=f"Database connection failed: {str(e)}"
        )

# --- User Management Endpoints ---
@app.post("/users/", response_model=schemas.User)
def create_user(user: schemas.UserCreate, db: Session = Depends(get_db)):
    db_user = crud.get_user(db, user_id=user.id)
    if db_user:
        raise HTTPException(status_code=400, detail="User ID already registered")
    return crud.create_user(db=db, user=user)

@app.get("/users/{user_id}", response_model=schemas.User)
def read_user(user_id: str, db: Session = Depends(get_db)):
    db_user = crud.get_user(db, user_id=user_id)
    if db_user is None:
        raise HTTPException(status_code=404, detail="User not found")
    return db_user

# --- Document Management Endpoints ---

@app.post("/documents/upload")
def upload_document(
        # Optional fields for email automation, but required for frontend
        title: Optional[str] = Form(None),
        department: Optional[str] = Form(None),
        user_id: Optional[str] = Form(None),
        # The file is always required
        file: UploadFile = File(...),
        db: Session = Depends(get_db)
):
    # --- 1. Set Default Values & Validate User ---
    # If a title wasn't provided (from email), create a default one.
    final_title = title or f"Email Attachment - {file.filename}"

    # If a user_id wasn't provided, it MUST be the automation user.
    final_user_id = user_id or "automation_user"

    # If a department wasn't provided, set it to be auto-detected by the pipeline.
    final_department = department or "auto-detected"

    # Now, use these final variables to validate the user
    user = crud.get_user(db, user_id=final_user_id)
    if not user:
        raise HTTPException(status_code=404, detail=f"Uploader '{final_user_id}' not found")

    # --- 2. Upload Original File to Cloud ---
    print("Uploading original file to cloud storage...")
    public_url = upload_file_to_supabase(file.file, file.filename)
    if not public_url:
        raise HTTPException(status_code=500, detail="Could not upload file to cloud storage.")
    print("File uploaded successfully. Public URL:", public_url)

    file.file.seek(0) # Rewind file for local processing

    # --- 3. Create Initial Database Record ---
    # This now correctly matches the function in crud.py (which should not take highlighted_file_path)
    document_data = schemas.DocumentCreate(title=final_title, department=final_department)
    db_document = crud.create_document(db=db, document=document_data, file_path=public_url, user_id=final_user_id)
    print(f"Initial document record created in DB with ID: {db_document.id}")

    # --- 4. Save Local Copy & Run ML Pipeline ---
    local_file_path = os.path.join(UPLOAD_DIRECTORY, file.filename)
    with open(local_file_path, "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)

    print("Starting ML pipeline processing...")
    ml_results = pipeline_process_pdf(
        pdf_path=local_file_path,
        clf_tokenizer=ml_models["tokenizer"],
        clf_model=ml_models["model"],
        nlp_model=ml_models["nlp_model"]
    )
    print("ML pipeline processing complete.")

    # --- 5. Upload Highlighted PDF (if created) ---
    highlighted_pdf_path = ml_results.get("highlighted_pdf")
    highlighted_public_url = None
    if highlighted_pdf_path and os.path.exists(highlighted_pdf_path):
        print("Uploading highlighted file to cloud storage...")
        with open(highlighted_pdf_path, "rb") as f:
            highlighted_filename = os.path.basename(highlighted_pdf_path)
            highlighted_public_url = upload_file_to_supabase(f, highlighted_filename)
        print("Highlighted PDF uploaded successfully.")

    # ... (after the ML pipeline runs) ...

    # --- (6) UPDATE THE DATABASE RECORD WITH ML RESULTS ---
    print("Updating database record with ML results...")
    final_document = crud.update_document_with_ml_results(
        db,
        document_id=db_document.id,
        ml_results=ml_results,
        highlighted_file_path=highlighted_public_url
    )
    print("Database record updated successfully.")

    # --- (7) CREATE NOTIFICATION FOR THE DEPARTMENT ---
    # The ML results contain the department the document was routed to.
    routed_department = final_document.department
    if routed_department and routed_department != "Unknown":
        notification_message = f"New document '{final_document.title}' has been assigned to your department."
        crud.create_notification(
            db=db,
            document_id=final_document.id,
            department=routed_department,
            message=notification_message
        )
        print(f"Notification created for department: {routed_department}")


    # --- 8. Cleanup Local Files ---
    try:
        if os.path.exists(local_file_path):
            os.remove(local_file_path)
        if highlighted_pdf_path and os.path.exists(highlighted_pdf_path):
            os.remove(highlighted_pdf_path)
    except OSError as e:
        print(f"Error during file cleanup: {e}")

    # --- 9. Return Final Response ---
    return {
        "message": "Document processed and all data saved successfully.",
        "document_info": schemas.Document.model_validate(final_document),
        "highlighted_pdf_url": highlighted_public_url
    }

# --- Read Endpoints ---
@app.get("/documents/", response_model=list[schemas.Document])
def read_all_documents(skip: int = 0, limit: int = 100, db: Session = Depends(get_db)):
    documents = crud.get_all_documents(db, skip=skip, limit=limit)
    return documents

@app.get("/documents/{department}", response_model=list[schemas.Document])
def read_documents_for_department(department: str, skip: int = 0, limit: int = 100, db: Session = Depends(get_db)):
    documents = crud.get_documents_by_department(db, department=department, skip=skip, limit=limit)
    return documents

# --- ADD THESE NEW ENDPOINTS FOR Q&A ---

def run_ml_qna_in_background(question_id: uuid.UUID, pinecone_pdf_id: str, question_text: str):
    print(f"[BACKGROUND TASK] Starting ML RAG pipeline for question ID: {question_id}")

    # Call the ML function to get the answer
    answer_text = generate_ml_answer(
        pdf_id=pinecone_pdf_id, # <--- This now uses the correct filename ID
        query=question_text
    )
    print(f"[BACKGROUND TASK] Answer generated: {answer_text[:100]}...")

    # Use the CRUD function to save the answer to the database
    db = SessionLocal()
    try:
        # Use the new 'db' session to update the database
        crud.update_question_with_answer(
            db=db,
            question_id=question_id,
            answer_text=answer_text
        )
        print(f"[BACKGROUND TASK] Answer saved to database for question ID: {question_id}")
    finally:
        db.close()

@app.post("/documents/{document_id}/questions", response_model=schemas.Question)
def ask_question_on_document(
        document_id: uuid.UUID,
        question: schemas.QuestionCreate,
        background_tasks: BackgroundTasks,
        db: Session = Depends(get_db)
):
    """
    Endpoint for the frontend to submit a new question.
    It saves the question, calls the ML RAG pipeline to generate a real answer,
    and saves the answer to the database.
    """
    # First, fetch the document to get its uploader's ID
    document = crud.get_document_by_id(db, document_id=document_id)
    if not document:
        raise HTTPException(status_code=404, detail="Document not found")

    user_id_who_asked = document.uploader_id

    # Create the question in the database with a NULL answer first
    db_question = crud.create_question(
        db=db,
        document_id=document_id,
        user_id=user_id_who_asked,
        question=question
    )
    print(f"New question saved with ID: {db_question.id}. Triggering background ML task.")


    pinecone_pdf_id = os.path.splitext(os.path.basename(unquote(document.file_path)))[0]

    background_tasks.add_task(
        run_ml_qna_in_background,
        db_question.id,
        pinecone_pdf_id, # <--- Pass the correct filename ID
        question.question_text,
    )
    # --- END OF KEY CHANGE ---

    # Return the new question object to the frontend immediately.
    # The frontend will see that `answer_text` is still null.
    return db_question


@app.get("/documents/{document_id}/questions", response_model=List[schemas.Question])
def get_document_questions(
        document_id: uuid.UUID,
        db: Session = Depends(get_db) # Ensure there are no typos like 'get_d b'
):
    """
    Endpoint for the frontend to retrieve the full conversation history
    (all questions and their answers) for a document.
    """
    return crud.get_questions_for_document(db=db, document_id=document_id)


# --- ADD THIS NEW ENDPOINT FOR EMAIL AUTOMATION ---


@app.patch("/questions/{question_id}/answer")
def submit_answer(
        question_id: uuid.UUID,
        answer: schemas.Answer,
        db: Session = Depends(get_db)
):
    """
    INTERNAL ENDPOINT for the ML service to submit its generated answer
    for a question that has already been created.
    """
    updated_question = crud.update_question_with_answer(
        db=db,
        question_id=question_id,
        answer_text=answer.answer_text
    )
    if not updated_question:
        raise HTTPException(status_code=404, detail="Question not found")

    print(f"Answer submitted for question ID: {question_id}")
    return {"status": "success", "question": updated_question}


# --- NEW ENDPOINT FOR NOTIFICATIONS ---
@app.get("/notifications/{department}", response_model=List[schemas.Notification])
def read_notifications(department: str, db: Session = Depends(get_db)):
    """Fetches unread notifications for a given department."""
    notifications = crud.get_notifications_for_department(db, department=department)
    return notifications