Spaces:
Paused
Paused
| printf "Running meta-llama/Llama-3.2-3B-Instruct using vLLM OpenAI compatible API Server at port %s\n" "7860" | |
| # Llama-3.2-3B-Instruct max context length is 131072, but we reduce it to 32k. | |
| # 32k tokens, 3/4 of 32k is 24k words, each page average is 500 or 0.5k words, | |
| # so that's basically 24k / .5k = 24 x 2 =~48 pages. | |
| # Because when we use maximum token length, it will be slower and the memory is not enough for T4. | |
| # https://github.com/vllm-project/vllm/blob/v0.6.4/vllm/config.py#L85-L86 | |
| # https://github.com/vllm-project/vllm/blob/v0.6.4/vllm/config.py#L98-L102 | |
| # [rank0]: raise ValueError( | |
| # [rank0]: ValueError: The model's max seq len (131072) | |
| # is larger than the maximum number of tokens that can be stored in KV cache (57056). | |
| # Try increasing `gpu_memory_utilization` or decreasing `max_model_len` when initializing the engine. | |
| # | |
| # Actually, the meta-llama/Llama-3.2-3B-Instruct rev 0cb88a4f764b7a12671c53f0838cd831a0843b95 | |
| # is enough with T4 16GB, but for the sake of the performance and comparing with the same | |
| # params with the sail/Sailor-1.8B-Chat, I use the | |
| # meta-llama/Llama-3.2-1B-Instruct rev 9213176726f574b556790deb65791e0c5aa438b6 | |
| python -u /app/openai_compatible_api_server.py \ | |
| --model meta-llama/Llama-3.2-3B-Instruct \ | |
| --revision 0cb88a4f764b7a12671c53f0838cd831a0843b95 \ | |
| --seed 42 \ | |
| --host 0.0.0.0 \ | |
| --port 7860 \ | |
| --max-num-batched-tokens 32768 \ | |
| --max-model-len 32768 \ | |
| --dtype float16 \ | |
| --gpu-memory-utilization 0.85 | |