Abdullah Zaki
commited on
Commit
·
fd00e59
1
Parent(s):
574b1b5
Add plotly t
Browse files
app.py
CHANGED
|
@@ -3,122 +3,80 @@ import pandas as pd
|
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
from chronos import ChronosPipeline
|
| 6 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
-
from supabase import create_client, Client
|
| 8 |
-
import os
|
| 9 |
import plotly.express as px
|
| 10 |
|
| 11 |
# Initialize Chronos-T5-Large for forecasting
|
| 12 |
-
#
|
| 13 |
# The device_map automatically handles CPU/GPU allocation.
|
|
|
|
| 14 |
chronos_pipeline = ChronosPipeline.from_pretrained(
|
| 15 |
"amazon/chronos-t5-large",
|
| 16 |
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
| 17 |
torch_dtype=torch.bfloat16
|
| 18 |
)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
"radm/prophet-qwen3-4b-sft",
|
| 25 |
-
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
| 26 |
-
torch_dtype=torch.bfloat16
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
def fetch_supabase_data(supabase_url: str, supabase_key: str, table_name: str = "sentiment_data") -> pd.DataFrame:
|
| 30 |
"""
|
| 31 |
-
|
| 32 |
|
| 33 |
Args:
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
|
| 38 |
Returns:
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
"""
|
| 44 |
-
if
|
| 45 |
-
|
| 46 |
|
| 47 |
try:
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
supabase_client: Client = create_client(supabase_url, supabase_key)
|
| 51 |
-
response = supabase_client.table(table_name).select("date, sentiment").order("date", desc=False).execute()
|
| 52 |
-
|
| 53 |
-
if response.data:
|
| 54 |
-
df = pd.DataFrame(response.data)
|
| 55 |
-
# Ensure 'date' column is in datetime format
|
| 56 |
-
df['date'] = pd.to_datetime(df['date'])
|
| 57 |
-
# Ensure 'sentiment' column is numeric for forecasting
|
| 58 |
-
df['sentiment'] = pd.to_numeric(df['sentiment'])
|
| 59 |
-
return df
|
| 60 |
-
else:
|
| 61 |
-
raise ValueError(f"No data found in Supabase table '{table_name}'.")
|
| 62 |
-
except Exception as e:
|
| 63 |
-
raise Exception(f"Error fetching Supabase data: {str(e)}")
|
| 64 |
-
|
| 65 |
-
def forecast_and_report(
|
| 66 |
-
data_source: str,
|
| 67 |
-
supabase_url: str, # New input for Supabase URL
|
| 68 |
-
supabase_key: str, # New input for Supabase Key
|
| 69 |
-
csv_file=None,
|
| 70 |
-
prediction_length: int = 30,
|
| 71 |
-
table_name: str = "sentiment_data"
|
| 72 |
-
):
|
| 73 |
-
"""
|
| 74 |
-
Runs forecasting with Chronos-T5-Large and generates an Arabic report with Qwen3-4B-SFT.
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
Returns:
|
| 85 |
-
tuple: A tuple containing:
|
| 86 |
-
- dict: Forecast results as a dictionary.
|
| 87 |
-
- plotly.graph_objects.Figure: A Plotly figure of the forecast.
|
| 88 |
-
- str: The generated Arabic report.
|
| 89 |
-
- str: An error message if an error occurs.
|
| 90 |
-
"""
|
| 91 |
-
try:
|
| 92 |
-
# Load data based on selected source
|
| 93 |
-
df = pd.DataFrame() # Initialize df to avoid UnboundLocalError
|
| 94 |
-
if data_source == "Supabase":
|
| 95 |
-
df = fetch_supabase_data(supabase_url, supabase_key, table_name)
|
| 96 |
-
else: # data_source == "CSV Upload"
|
| 97 |
-
if csv_file is None:
|
| 98 |
-
return {"error": "Please upload a CSV file when 'CSV Upload' is selected."}, None, None, "Error: CSV file not provided."
|
| 99 |
-
df = pd.read_csv(csv_file.name) # Access the file path
|
| 100 |
-
# Basic validation for required columns in CSV
|
| 101 |
-
if "sentiment" not in df.columns or "date" not in df.columns:
|
| 102 |
-
return {"error": "CSV must contain 'date' and 'sentiment' columns."}, None, None, "Error: Missing 'date' or 'sentiment' columns in CSV."
|
| 103 |
-
df['date'] = pd.to_datetime(df['date'])
|
| 104 |
-
df['sentiment'] = pd.to_numeric(df['sentiment'])
|
| 105 |
-
|
| 106 |
-
# Ensure there's data to process
|
| 107 |
if df.empty:
|
| 108 |
-
return
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
# Prepare time series data for Chronos
|
| 111 |
-
#
|
| 112 |
context = torch.tensor(df["sentiment"].values, dtype=torch.float32)
|
| 113 |
|
| 114 |
# Run forecast using Chronos-T5-Large pipeline
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0)
|
| 118 |
|
| 119 |
-
#
|
| 120 |
-
#
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
forecast_df = pd.DataFrame({
|
| 123 |
"date": forecast_dates,
|
| 124 |
"low": low,
|
|
@@ -127,73 +85,43 @@ def forecast_and_report(
|
|
| 127 |
})
|
| 128 |
|
| 129 |
# Create forecast plot using Plotly
|
| 130 |
-
# Combine historical data for plotting if desired, but here we plot only forecast
|
| 131 |
fig = px.line(forecast_df, x="date", y=["median", "low", "high"], title="Sentiment Forecast")
|
| 132 |
-
fig.update_traces(line=dict(color="blue"), selector=dict(name="median"))
|
| 133 |
fig.update_traces(line=dict(color="red", dash="dash"), selector=dict(name="low"))
|
| 134 |
fig.update_traces(line=dict(color="green", dash="dash"), selector=dict(name="high"))
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
# Construct the prompt with relevant forecast snippets
|
| 138 |
-
prompt = (
|
| 139 |
-
"اكتب تقريراً رسمياً بالعربية يلخص توقعات المشاعر للأيام الثلاثين القادمة بناءً على البيانات التالية:\n"
|
| 140 |
-
f"- متوسط التوقعات: {median[:5].tolist()} (أول 5 أيام)...\n"
|
| 141 |
-
f"- الحد الأدنى (10%): {low[:5].tolist()}...\n"
|
| 142 |
-
f"- الحد الأعلى (90%): {high[:5].tolist()}...\n"
|
| 143 |
-
"التقرير يجب أن يكون موجزاً (200-300 كلمة)، يشرح الاتجاهات، ويستخدم لغة رسمية."
|
| 144 |
-
)
|
| 145 |
-
# Tokenize the prompt and move to the model's device (CPU/GPU)
|
| 146 |
-
inputs = qwen_tokenizer(prompt, return_tensors="pt").to(qwen_model.device)
|
| 147 |
-
# Generate the report text
|
| 148 |
-
outputs = qwen_model.generate(
|
| 149 |
-
inputs["input_ids"],
|
| 150 |
-
max_new_tokens=500, # Max length for the generated report
|
| 151 |
-
do_sample=True, # Enable sampling for more diverse text
|
| 152 |
-
temperature=0.7, # Control randomness (lower for less random)
|
| 153 |
-
top_p=0.9 # Nucleus sampling parameter
|
| 154 |
-
)
|
| 155 |
-
# Decode the generated tokens back to text, skipping special tokens
|
| 156 |
-
report = qwen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 157 |
|
| 158 |
-
return forecast_df.to_dict(), fig, report, "Success" # Return success message
|
| 159 |
except Exception as e:
|
| 160 |
-
# Catch any exceptions and return an error message
|
| 161 |
-
return
|
| 162 |
|
| 163 |
# Gradio interface definition
|
| 164 |
with gr.Blocks() as demo:
|
| 165 |
-
gr.Markdown("#
|
|
|
|
| 166 |
|
| 167 |
-
# Input components for Supabase credentials and data source selection
|
| 168 |
with gr.Row():
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
inputs=[
|
| 189 |
-
data_source,
|
| 190 |
-
supabase_url,
|
| 191 |
-
supabase_key,
|
| 192 |
-
csv_file,
|
| 193 |
-
prediction_length,
|
| 194 |
-
table_name
|
| 195 |
-
],
|
| 196 |
-
outputs=[output, plot, report, status_message]
|
| 197 |
)
|
| 198 |
|
| 199 |
# Launch the Gradio application
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
from chronos import ChronosPipeline
|
|
|
|
|
|
|
|
|
|
| 6 |
import plotly.express as px
|
| 7 |
|
| 8 |
# Initialize Chronos-T5-Large for forecasting
|
| 9 |
+
# This model is loaded once at the start of the Gradio app for efficiency.
|
| 10 |
# The device_map automatically handles CPU/GPU allocation.
|
| 11 |
+
# torch_dtype=torch.bfloat16 is used for optimized performance if a compatible GPU is available.
|
| 12 |
chronos_pipeline = ChronosPipeline.from_pretrained(
|
| 13 |
"amazon/chronos-t5-large",
|
| 14 |
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
| 15 |
torch_dtype=torch.bfloat16
|
| 16 |
)
|
| 17 |
|
| 18 |
+
def run_chronos_forecast(
|
| 19 |
+
csv_file: gr.File,
|
| 20 |
+
prediction_length: int = 30
|
| 21 |
+
) -> tuple[pd.DataFrame, px.line, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
"""
|
| 23 |
+
Runs time series forecasting using the Chronos-T5-Large model.
|
| 24 |
|
| 25 |
Args:
|
| 26 |
+
csv_file (gr.File): The uploaded CSV file containing historical data.
|
| 27 |
+
Must have 'date' and 'sentiment' columns.
|
| 28 |
+
prediction_length (int): The number of future periods (days) to forecast.
|
| 29 |
|
| 30 |
Returns:
|
| 31 |
+
tuple: A tuple containing:
|
| 32 |
+
- pd.DataFrame: A DataFrame of the forecast results (date, low, median, high).
|
| 33 |
+
- plotly.graph_objects.Figure: A Plotly figure visualizing the forecast.
|
| 34 |
+
- str: A status message (e.g., "Success" or an error message).
|
| 35 |
"""
|
| 36 |
+
if csv_file is None:
|
| 37 |
+
return pd.DataFrame(), None, "Error: Please upload a CSV file."
|
| 38 |
|
| 39 |
try:
|
| 40 |
+
# Read the uploaded CSV file into a pandas DataFrame
|
| 41 |
+
df = pd.read_csv(csv_file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Validate required columns
|
| 44 |
+
if "date" not in df.columns or "sentiment" not in df.columns:
|
| 45 |
+
return pd.DataFrame(), None, "Error: CSV must contain 'date' and 'sentiment' columns."
|
| 46 |
+
|
| 47 |
+
# Convert 'date' column to datetime objects
|
| 48 |
+
df['date'] = pd.to_datetime(df['date'])
|
| 49 |
+
# Convert 'sentiment' column to numeric, handling potential errors
|
| 50 |
+
df['sentiment'] = pd.to_numeric(df['sentiment'], errors='coerce')
|
| 51 |
+
# Drop rows where sentiment could not be converted (e.g., NaN values)
|
| 52 |
+
df.dropna(subset=['sentiment'], inplace=True)
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
if df.empty:
|
| 55 |
+
return pd.DataFrame(), None, "Error: No valid sentiment data found in the CSV."
|
| 56 |
+
|
| 57 |
+
# Sort data by date to ensure correct time series order
|
| 58 |
+
df = df.sort_values(by='date').reset_index(drop=True)
|
| 59 |
|
| 60 |
# Prepare time series data for Chronos
|
| 61 |
+
# Chronos expects a 1D tensor of the time series values
|
| 62 |
context = torch.tensor(df["sentiment"].values, dtype=torch.float32)
|
| 63 |
|
| 64 |
# Run forecast using Chronos-T5-Large pipeline
|
| 65 |
+
# The predict method returns a tensor of forecasts
|
| 66 |
+
forecast_tensor = chronos_pipeline.predict(context, prediction_length)
|
|
|
|
| 67 |
|
| 68 |
+
# Calculate quantiles (10%, 50% (median), 90%) for the forecast
|
| 69 |
+
# forecast_tensor[0] selects the first (and usually only) batch of predictions
|
| 70 |
+
low, median, high = np.quantile(forecast_tensor[0].numpy(), [0.1, 0.5, 0.9], axis=0)
|
| 71 |
+
|
| 72 |
+
# Generate future dates for the forecast results
|
| 73 |
+
# Start from the day after the last historical date
|
| 74 |
+
last_historical_date = df["date"].iloc[-1]
|
| 75 |
+
forecast_dates = pd.date_range(start=last_historical_date + pd.Timedelta(days=1),
|
| 76 |
+
periods=prediction_length,
|
| 77 |
+
freq="D")
|
| 78 |
+
|
| 79 |
+
# Create a DataFrame for the forecast results
|
| 80 |
forecast_df = pd.DataFrame({
|
| 81 |
"date": forecast_dates,
|
| 82 |
"low": low,
|
|
|
|
| 85 |
})
|
| 86 |
|
| 87 |
# Create forecast plot using Plotly
|
|
|
|
| 88 |
fig = px.line(forecast_df, x="date", y=["median", "low", "high"], title="Sentiment Forecast")
|
| 89 |
+
fig.update_traces(line=dict(color="blue", width=3), selector=dict(name="median"))
|
| 90 |
fig.update_traces(line=dict(color="red", dash="dash"), selector=dict(name="low"))
|
| 91 |
fig.update_traces(line=dict(color="green", dash="dash"), selector=dict(name="high"))
|
| 92 |
+
fig.update_layout(hovermode="x unified", title_x=0.5) # Improve hover interactivity and center title
|
| 93 |
|
| 94 |
+
return forecast_df, fig, "Forecast generated successfully!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
|
|
|
| 96 |
except Exception as e:
|
| 97 |
+
# Catch any exceptions and return an error message to the user
|
| 98 |
+
return pd.DataFrame(), None, f"An error occurred: {str(e)}"
|
| 99 |
|
| 100 |
# Gradio interface definition
|
| 101 |
with gr.Blocks() as demo:
|
| 102 |
+
gr.Markdown("# Chronos Time Series Forecasting")
|
| 103 |
+
gr.Markdown("Upload a CSV file containing historical data with 'date' and 'sentiment' columns to get a sentiment forecast.")
|
| 104 |
|
|
|
|
| 105 |
with gr.Row():
|
| 106 |
+
csv_input = gr.File(label="Upload Historical Data (CSV)")
|
| 107 |
+
prediction_length_slider = gr.Slider(
|
| 108 |
+
1, 60, value=30, step=1, label="Prediction Length (days)"
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
run_button = gr.Button("Generate Forecast")
|
| 112 |
+
|
| 113 |
+
with gr.Tab("Forecast Plot"):
|
| 114 |
+
forecast_plot_output = gr.Plot(label="Sentiment Forecast Plot")
|
| 115 |
+
with gr.Tab("Forecast Data"):
|
| 116 |
+
forecast_json_output = gr.DataFrame(label="Raw Forecast Data") # Changed to DataFrame for better readability
|
| 117 |
+
|
| 118 |
+
status_message_output = gr.Textbox(label="Status", interactive=False)
|
| 119 |
+
|
| 120 |
+
# Define the click event handler for the run button
|
| 121 |
+
run_button.click(
|
| 122 |
+
fn=run_chronos_forecast,
|
| 123 |
+
inputs=[csv_input, prediction_length_slider],
|
| 124 |
+
outputs=[forecast_json_output, forecast_plot_output, status_message_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
)
|
| 126 |
|
| 127 |
# Launch the Gradio application
|