--- title: Zen Training emoji: 🧘 colorFrom: blue colorTo: purple sdk: gradio sdk_version: 5.41.1 app_file: app.py pinned: true license: apache-2.0 hardware: a10g-large --- # 🧘 Zen Training Space **Unified Training Platform for All Zen Models** Train any Zen model with any dataset combination from HuggingFace. Everything runs directly from HF datasets - no local storage needed! ## 🎯 Features ### Supported Models **Language Models:** - `zen-nano` (0.6B) - Edge deployment - `zen-eco` (4B) - Balanced performance - `zen-omni` (7B) - Multi-task - `zen-coder` (14B) - Code generation - `zen-next` (32B) - Frontier performance **Vision-Language Models:** - `zen-vl-4b` - Efficient VL with function calling - `zen-vl-8b` - Enhanced VL capabilities - `zen-vl-30b` - Maximum VL performance ### Supported Datasets **Agent Training (ADP):** - AgentTuning OS/KG/DB (~15k samples) - Synatra (99k agent trajectories) - Code Feedback (66k samples) - Go Browse (27k web interactions) **Function Calling:** - xLAM 60k (Salesforce high-quality function calling) **Coding:** - Magicoder-OSS-Instruct (75k code samples) - CodeFeedback-Filtered (157k code instructions) - Evol-Instruct-Code (80k evolved code complexity) **Advanced Agentic:** - AgentInstruct (1M agent trajectories from Microsoft) - ToolBench (16k tool use examples) - WebArena (2k web navigation tasks) **Instruction Tuning:** - Alpaca (52k instruction samples) - OpenOrca (4.2M reasoning-focused instructions) ## 🚀 How to Use 1. **Select Model**: Choose from language or vision-language models 2. **Select Datasets**: Check multiple datasets to combine them 3. **Configure Training**: Set epochs, batch size, learning rate, max samples 4. **Set Output Repo**: Specify HuggingFace repo for trained model 5. **Start Training**: Click the button and monitor logs ## ⚙️ Training Configuration ### Recommended Settings **4B Models (A10G - 24GB):** - Batch Size: 1-2 - Max Samples: 10,000-30,000 - Time: 4-8 hours - Cost: ~$3-5 **8B Models (A100 - 40GB):** - Batch Size: 2-4 - Max Samples: 30,000-50,000 - Time: 8-12 hours - Cost: ~$15-20 **32B Models (A100 - 80GB):** - Batch Size: 1-2 - Max Samples: 50,000-100,000 - Time: 20-30 hours - Cost: ~$50-80 ## 📊 Dataset Combinations ### For Agent Training: ``` ADP Synatra (80%) + xLAM (20%) = Strong agent + quality function calling ``` ### For Code Models: ``` Code Feedback (70%) + Alpaca (30%) = Code expertise + general instruction following ``` ### For VL Models: ``` ADP (all configs) + xLAM = Complete vision-language agent training ``` ## 🔒 Requirements - HuggingFace Pro account (for GPU access) - Write access to output repository - HF_TOKEN secret set in Space settings ## 💡 Tips 1. **Start Small**: Test with 1,000 samples first 2. **Mix Datasets**: Combine complementary datasets for best results 3. **Monitor Logs**: Watch for OOM errors and adjust batch size 4. **Save Often**: Lower save_steps for longer training runs ## 📚 Resources - **Website**: https://zenlm.org - **GitHub**: https://github.com/zenlm - **Models**: https://huggingface.co/zenlm - **Datasets**: - [ADP](https://huggingface.co/datasets/neulab/agent-data-collection) - [xLAM](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) ## 📄 License Apache 2.0 ## 🙏 Citations ```bibtex @software{zen-training-2025, title={Zen Training: Unified Training Platform for Zen Models}, author={Zen AI Team}, year={2025}, url={https://huggingface.co/spaces/zenlm/zen-training} } @article{adp2024, title={Agent Data Protocol}, author={NeuLab}, journal={arXiv preprint arXiv:2510.24702}, year={2024} } @dataset{xlam2024, title={xLAM Function Calling Dataset}, author={Salesforce Research}, year={2024} } ``` # v1.1