Spaces:
Runtime error
Runtime error
| import os | |
| import time | |
| import requests | |
| import random | |
| import json | |
| import base64 | |
| from io import BytesIO | |
| from PIL import Image | |
| class Prodia: | |
| def __init__(self, api_key, base=None): | |
| self.base = base or "https://api.prodia.com/v1" | |
| self.headers = { | |
| "X-Prodia-Key": api_key | |
| } | |
| def sd_controlnet(self, params): | |
| response = self._post(f"{self.base}/sd/controlnet", params) | |
| return response.json() | |
| def sd_transform(self, params): | |
| response = self._post(f"{self.base}/sd/transform", params) | |
| return response.json() | |
| def sd_generate(self, params): | |
| response = self._post(f"{self.base}/sd/generate", params) | |
| return response.json() | |
| def sdxl_generate(self, params): | |
| response = self._post(f"{self.base}/sdxl/generate", params) | |
| return response.json() | |
| def upscale_image(self, params): | |
| response = self._post(f"{self.base}/upscale", params) | |
| return response.json() | |
| def get_job(self, job_id): | |
| response = self._get(f"{self.base}/job/{job_id}") | |
| return response.json() | |
| def wait(self, job): | |
| job_result = job | |
| while job_result['status'] not in ['succeeded', 'failed']: | |
| time.sleep(0.25) | |
| job_result = self.get_job(job['job']) | |
| if job_result['status'] == 'failed': | |
| raise Exception("Job failed") | |
| return job_result | |
| def upload(self, file): | |
| files = {'file': open(file, 'rb')} | |
| img_id = requests.post(os.getenv("IMAGES_1"), files=files).json()['id'] | |
| payload = { | |
| "content": "", | |
| "nonce": f"{random.randint(1, 10000000)}H9X42KSEJFNNH", | |
| "replies": [], | |
| "attachments": | |
| [img_id] | |
| } | |
| resp = requests.post(os.getenv("IMAGES_2"), json=payload, headers={"x-session-token": os.getenv("session-token")}) | |
| return f"{os.getenv('IMAGES_1')}/{img_id}/{resp.json()['attachments'][0]['filename']}" | |
| def list_models(self): | |
| response = self._get(f"{self.base}/models/list") | |
| return response.json() | |
| def _post(self, url, params): | |
| headers = { | |
| **self.headers, | |
| "Content-Type": "application/json" | |
| } | |
| response = requests.post(url, headers=headers, data=json.dumps(params)) | |
| if response.status_code != 200: | |
| raise Exception(f"Bad Prodia Response: {response.status_code}") | |
| return response | |
| def _get(self, url): | |
| response = requests.get(url, headers=self.headers) | |
| if response.status_code != 200: | |
| raise Exception(f"Bad Prodia Response: {response.status_code}") | |
| return response | |
| def image_to_base64(image_path): | |
| # Open the image with PIL | |
| with Image.open(image_path) as image: | |
| # Convert the image to bytes | |
| buffered = BytesIO() | |
| image.save(buffered, format="PNG") # You can change format to PNG if needed | |
| # Encode the bytes to base64 | |
| img_str = base64.b64encode(buffered.getvalue()) | |
| return img_str.decode('utf-8') # Convert bytes to string | |
| prodia_client = Prodia(api_key=os.getenv("PRODIA_X_KEY")) | |
| def generate_sdxl(prompt, negative_prompt, model, steps, sampler, cfg_scale, seed): | |
| result = prodia_client.sdxl_generate({ | |
| "prompt": prompt, | |
| "negative_prompt": negative_prompt, | |
| "model": model, | |
| "steps": steps, | |
| "sampler": sampler, | |
| "cfg_scale": cfg_scale, | |
| "seed": seed | |
| }) | |
| job = prodia_client.wait(result) | |
| return job["imageUrl"] | |
| def generate_sd(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, upscale): | |
| result = prodia_client.sd_generate({ | |
| "prompt": prompt, | |
| "negative_prompt": negative_prompt, | |
| "model": model, | |
| "steps": steps, | |
| "sampler": sampler, | |
| "cfg_scale": cfg_scale, | |
| "seed": seed, | |
| "upscale": upscale, | |
| "width": width, | |
| "height": height | |
| }) | |
| job = prodia_client.wait(result) | |
| return job["imageUrl"] | |
| def transform_sd(image, model, prompt, denoising_strength, negative_prompt, steps, cfg_scale, seed, upscale, sampler): | |
| image_url = prodia_client.upload(image) | |
| result = prodia_client.sd_transform({ | |
| "imageUrl": image_url, | |
| 'model': model, | |
| 'prompt': prompt, | |
| 'denoising_strength': denoising_strength, | |
| 'negative_prompt': negative_prompt, | |
| 'steps': steps, | |
| 'cfg_scale': cfg_scale, | |
| 'seed': seed, | |
| 'upscale': upscale, | |
| 'sampler': sampler | |
| }) | |
| job = prodia_client.wait(result) | |
| return job["imageUrl"] | |
| def controlnet_sd(image, controlnet_model, controlnet_module, threshold_a, threshold_b, resize_mode, prompt, negative_prompt, steps, cfg_scale, seed, sampler, width, height): | |
| image_url = prodia_client.upload(image) | |
| result = prodia_client.sd_transform({ | |
| "imageUrl": image_url, | |
| "controlnet_model": controlnet_model, | |
| "controlnet_module": controlnet_module, | |
| "threshold_a": threshold_a, | |
| "threshold_b": threshold_b, | |
| "resize_mode": int(resize_mode), | |
| "prompt": prompt, | |
| 'negative_prompt': negative_prompt, | |
| 'steps': steps, | |
| 'cfg_scale': cfg_scale, | |
| 'seed': seed, | |
| 'sampler': sampler, | |
| "height": height, | |
| "width": width | |
| }) | |
| job = prodia_client.wait(result) | |
| return job["imageUrl"] | |
| def image_upscale(image, scale_by): | |
| image_url = prodia_client.upload(image) | |
| result = prodia_client.upscale_image({ | |
| 'imageUrl': image_url, | |
| 'resize': int(scale_by) | |
| }) | |
| job = prodia_client.wait(result) | |
| return job["imageUrl"] | |
| def get_models(): | |
| return prodia_client.list_models() | |