Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, BitsAndBytesConfig
|
| 5 |
+
import os
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
# Disable wandb
|
| 9 |
+
os.environ["WANDB_DISABLED"] = "true"
|
| 10 |
+
|
| 11 |
+
# Global variables
|
| 12 |
+
model = None
|
| 13 |
+
tokenizer = None
|
| 14 |
+
training_status = "Not started"
|
| 15 |
+
|
| 16 |
+
def load_model():
|
| 17 |
+
global model, tokenizer
|
| 18 |
+
try:
|
| 19 |
+
# Configure 4-bit quantization for memory efficiency
|
| 20 |
+
quantization_config = BitsAndBytesConfig(
|
| 21 |
+
load_in_4bit=True,
|
| 22 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 23 |
+
bnb_4bit_quant_type="nf4",
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Load model and tokenizer
|
| 27 |
+
model_name = "LLM360/K2-Think"
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
+
model_name,
|
| 31 |
+
quantization_config=quantization_config,
|
| 32 |
+
device_map="auto"
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Set padding token
|
| 36 |
+
if tokenizer.pad_token is None:
|
| 37 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 38 |
+
|
| 39 |
+
return "Model loaded successfully!"
|
| 40 |
+
except Exception as e:
|
| 41 |
+
return f"Error loading model: {str(e)}"
|
| 42 |
+
|
| 43 |
+
def prepare_data():
|
| 44 |
+
try:
|
| 45 |
+
# Load a sample dataset (you can replace this with your own)
|
| 46 |
+
dataset = load_dataset("imdb")
|
| 47 |
+
|
| 48 |
+
# Preprocessing function
|
| 49 |
+
def preprocess_function(examples):
|
| 50 |
+
# Format the text for instruction tuning
|
| 51 |
+
texts = []
|
| 52 |
+
for text, label in zip(examples["text"], examples["label"]):
|
| 53 |
+
sentiment = "positive" if label == 1 else "negative"
|
| 54 |
+
texts.append(f"Analyze the sentiment of this movie review: {text}\nSentiment: {sentiment}")
|
| 55 |
+
|
| 56 |
+
# Tokenize
|
| 57 |
+
tokenized = tokenizer(texts, truncation=True, padding=True, max_length=256)
|
| 58 |
+
|
| 59 |
+
# Create labels
|
| 60 |
+
tokenized["labels"] = tokenized["input_ids"].copy()
|
| 61 |
+
|
| 62 |
+
return tokenized
|
| 63 |
+
|
| 64 |
+
# Apply preprocessing
|
| 65 |
+
tokenized_dataset = dataset.map(
|
| 66 |
+
preprocess_function,
|
| 67 |
+
batched=True,
|
| 68 |
+
remove_columns=dataset["train"].column_names
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Use small subset for demo
|
| 72 |
+
train_dataset = tokenized_dataset["train"].shuffle().select(range(50))
|
| 73 |
+
|
| 74 |
+
return train_dataset, "Data prepared successfully!"
|
| 75 |
+
except Exception as e:
|
| 76 |
+
return None, f"Error preparing data: {str(e)}"
|
| 77 |
+
|
| 78 |
+
def train_model():
|
| 79 |
+
global model, tokenizer, training_status
|
| 80 |
+
try:
|
| 81 |
+
training_status = "Starting training..."
|
| 82 |
+
yield training_status
|
| 83 |
+
|
| 84 |
+
# Prepare data
|
| 85 |
+
train_dataset, status = prepare_data()
|
| 86 |
+
if train_dataset is None:
|
| 87 |
+
training_status = status
|
| 88 |
+
yield training_status
|
| 89 |
+
return
|
| 90 |
+
|
| 91 |
+
training_status = status
|
| 92 |
+
yield training_status
|
| 93 |
+
|
| 94 |
+
# Set up training arguments
|
| 95 |
+
training_args = TrainingArguments(
|
| 96 |
+
output_dir="./k2-think-finetuned",
|
| 97 |
+
per_device_train_batch_size=1,
|
| 98 |
+
gradient_accumulation_steps=4,
|
| 99 |
+
num_train_epochs=1,
|
| 100 |
+
learning_rate=2e-5,
|
| 101 |
+
fp16=True,
|
| 102 |
+
save_strategy="no",
|
| 103 |
+
logging_steps=5,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
training_status = "Training configuration set up..."
|
| 107 |
+
yield training_status
|
| 108 |
+
|
| 109 |
+
# Create trainer
|
| 110 |
+
trainer = Trainer(
|
| 111 |
+
model=model,
|
| 112 |
+
args=training_args,
|
| 113 |
+
train_dataset=train_dataset,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
training_status = "Starting training process..."
|
| 117 |
+
yield training_status
|
| 118 |
+
|
| 119 |
+
# Start training
|
| 120 |
+
trainer.train()
|
| 121 |
+
|
| 122 |
+
training_status = "Training completed! Saving model..."
|
| 123 |
+
yield training_status
|
| 124 |
+
|
| 125 |
+
# Save model
|
| 126 |
+
model.save_pretrained("./k2-think-finetuned")
|
| 127 |
+
tokenizer.save_pretrained("./k2-think-finetuned")
|
| 128 |
+
|
| 129 |
+
training_status = "Model saved successfully! Ready for inference."
|
| 130 |
+
yield training_status
|
| 131 |
+
|
| 132 |
+
except Exception as e:
|
| 133 |
+
training_status = f"Error during training: {str(e)}"
|
| 134 |
+
yield training_status
|
| 135 |
+
|
| 136 |
+
def generate_text(prompt):
|
| 137 |
+
if model is None or tokenizer is None:
|
| 138 |
+
return "Please load the model first."
|
| 139 |
+
|
| 140 |
+
try:
|
| 141 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 142 |
+
outputs = model.generate(
|
| 143 |
+
inputs.input_ids,
|
| 144 |
+
max_length=200,
|
| 145 |
+
num_return_sequences=1,
|
| 146 |
+
temperature=0.7,
|
| 147 |
+
)
|
| 148 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 149 |
+
except Exception as e:
|
| 150 |
+
return f"Error generating text: {str(e)}"
|
| 151 |
+
|
| 152 |
+
# Create the Gradio interface
|
| 153 |
+
with gr.Blocks() as demo:
|
| 154 |
+
gr.Markdown("# K2-Think Model Training")
|
| 155 |
+
|
| 156 |
+
with gr.Tab("Training"):
|
| 157 |
+
gr.Markdown("## Fine-tune K2-Think Model")
|
| 158 |
+
|
| 159 |
+
with gr.Row():
|
| 160 |
+
load_btn = gr.Button("Load Model")
|
| 161 |
+
train_btn = gr.Button("Start Training")
|
| 162 |
+
|
| 163 |
+
status_output = gr.Textbox(label="Training Status", value=training_status)
|
| 164 |
+
|
| 165 |
+
load_btn.click(load_model, outputs=status_output)
|
| 166 |
+
train_btn.click(train_model, outputs=status_output)
|
| 167 |
+
|
| 168 |
+
with gr.Tab("Inference"):
|
| 169 |
+
gr.Markdown("## Test Your Fine-tuned Model")
|
| 170 |
+
|
| 171 |
+
with gr.Row():
|
| 172 |
+
prompt_input = gr.Textbox(label="Enter your prompt", placeholder="Analyze the sentiment of this movie review: This movie was amazing!")
|
| 173 |
+
generate_btn = gr.Button("Generate")
|
| 174 |
+
|
| 175 |
+
output_text = gr.Textbox(label="Generated Text")
|
| 176 |
+
|
| 177 |
+
generate_btn.click(generate_text, inputs=prompt_input, outputs=output_text)
|
| 178 |
+
|
| 179 |
+
demo.launch()
|