Commit
·
f245309
1
Parent(s):
58ffba7
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
-
-
|
| 4 |
thumbnail: null
|
| 5 |
pipeline_tag: automatic-speech-recognition
|
| 6 |
tags:
|
|
@@ -15,31 +15,31 @@ metrics:
|
|
| 15 |
- wer
|
| 16 |
- cer
|
| 17 |
model-index:
|
| 18 |
-
- name: asr-wav2vec2-commonvoice-14-
|
| 19 |
results:
|
| 20 |
- task:
|
| 21 |
name: Automatic Speech Recognition
|
| 22 |
type: automatic-speech-recognition
|
| 23 |
dataset:
|
| 24 |
-
name: CommonVoice Corpus 14.0 (
|
| 25 |
type: mozilla-foundation/common_voice_14.0
|
| 26 |
-
config:
|
| 27 |
split: test
|
| 28 |
args:
|
| 29 |
-
language:
|
| 30 |
metrics:
|
| 31 |
- name: Test WER
|
| 32 |
type: wer
|
| 33 |
-
value: '
|
| 34 |
---
|
| 35 |
|
| 36 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
| 37 |
<br/><br/>
|
| 38 |
|
| 39 |
-
# wav2vec 2.0 with CTC trained on CommonVoice
|
| 40 |
|
| 41 |
This repository provides all the necessary tools to perform automatic speech
|
| 42 |
-
recognition from an end-to-end system pretrained on CommonVoice (
|
| 43 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
| 44 |
[SpeechBrain](https://speechbrain.github.io).
|
| 45 |
|
|
@@ -47,13 +47,13 @@ The performance of the model is the following:
|
|
| 47 |
|
| 48 |
| Release | Test CER | Test WER | GPUs |
|
| 49 |
|:-------------:|:--------------:|:--------------:| :--------:|
|
| 50 |
-
| 15-08-23 |
|
| 51 |
|
| 52 |
## Pipeline description
|
| 53 |
|
| 54 |
This ASR system is composed of 2 different but linked blocks:
|
| 55 |
- Tokenizer (unigram) that transforms words into unigrams and trained with
|
| 56 |
-
the train transcriptions (train.tsv) of CommonVoice (
|
| 57 |
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model (wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on CommonVoice DE.
|
| 58 |
The obtained final acoustic representation is given to the CTC decoder.
|
| 59 |
|
|
@@ -71,13 +71,13 @@ pip install speechbrain transformers
|
|
| 71 |
Please notice that we encourage you to read our tutorials and learn more about
|
| 72 |
[SpeechBrain](https://speechbrain.github.io).
|
| 73 |
|
| 74 |
-
### Transcribing your own audio files (in
|
| 75 |
|
| 76 |
```python
|
| 77 |
from speechbrain.pretrained import EncoderASR
|
| 78 |
|
| 79 |
-
asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-14-
|
| 80 |
-
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-14-
|
| 81 |
|
| 82 |
```
|
| 83 |
### Inference on GPU
|
|
@@ -103,10 +103,10 @@ pip install -e .
|
|
| 103 |
3. Run Training:
|
| 104 |
```bash
|
| 105 |
cd recipes/CommonVoice/ASR/CTC/
|
| 106 |
-
python train_with_wav2vec.py hparams/
|
| 107 |
```
|
| 108 |
|
| 109 |
-
You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/
|
| 110 |
|
| 111 |
### Limitations
|
| 112 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
|
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
+
- es
|
| 4 |
thumbnail: null
|
| 5 |
pipeline_tag: automatic-speech-recognition
|
| 6 |
tags:
|
|
|
|
| 15 |
- wer
|
| 16 |
- cer
|
| 17 |
model-index:
|
| 18 |
+
- name: asr-wav2vec2-commonvoice-14-es
|
| 19 |
results:
|
| 20 |
- task:
|
| 21 |
name: Automatic Speech Recognition
|
| 22 |
type: automatic-speech-recognition
|
| 23 |
dataset:
|
| 24 |
+
name: CommonVoice Corpus 14.0 (Spanish)
|
| 25 |
type: mozilla-foundation/common_voice_14.0
|
| 26 |
+
config: es
|
| 27 |
split: test
|
| 28 |
args:
|
| 29 |
+
language: es
|
| 30 |
metrics:
|
| 31 |
- name: Test WER
|
| 32 |
type: wer
|
| 33 |
+
value: '13.28'
|
| 34 |
---
|
| 35 |
|
| 36 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
| 37 |
<br/><br/>
|
| 38 |
|
| 39 |
+
# wav2vec 2.0 with CTC trained on CommonVoice Spanish (No LM)
|
| 40 |
|
| 41 |
This repository provides all the necessary tools to perform automatic speech
|
| 42 |
+
recognition from an end-to-end system pretrained on CommonVoice (Spanish Language) within
|
| 43 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
| 44 |
[SpeechBrain](https://speechbrain.github.io).
|
| 45 |
|
|
|
|
| 47 |
|
| 48 |
| Release | Test CER | Test WER | GPUs |
|
| 49 |
|:-------------:|:--------------:|:--------------:| :--------:|
|
| 50 |
+
| 15-08-23 | 3.80 | 13.28 | 1xV100 32GB |
|
| 51 |
|
| 52 |
## Pipeline description
|
| 53 |
|
| 54 |
This ASR system is composed of 2 different but linked blocks:
|
| 55 |
- Tokenizer (unigram) that transforms words into unigrams and trained with
|
| 56 |
+
the train transcriptions (train.tsv) of CommonVoice (es).
|
| 57 |
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model (wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on CommonVoice DE.
|
| 58 |
The obtained final acoustic representation is given to the CTC decoder.
|
| 59 |
|
|
|
|
| 71 |
Please notice that we encourage you to read our tutorials and learn more about
|
| 72 |
[SpeechBrain](https://speechbrain.github.io).
|
| 73 |
|
| 74 |
+
### Transcribing your own audio files (in Spanish)
|
| 75 |
|
| 76 |
```python
|
| 77 |
from speechbrain.pretrained import EncoderASR
|
| 78 |
|
| 79 |
+
asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-14-es", savedir="pretrained_models/asr-wav2vec2-commonvoice-14-es")
|
| 80 |
+
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-14-es/example-es.wav")
|
| 81 |
|
| 82 |
```
|
| 83 |
### Inference on GPU
|
|
|
|
| 103 |
3. Run Training:
|
| 104 |
```bash
|
| 105 |
cd recipes/CommonVoice/ASR/CTC/
|
| 106 |
+
python train_with_wav2vec.py hparams/train_es_with_wav2vec.yaml --data_folder=your_data_folder
|
| 107 |
```
|
| 108 |
|
| 109 |
+
You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/ejvzgl3d3g8g9su/AACYtbSWbDHvBr06lAb7A4mVa?dl=0).
|
| 110 |
|
| 111 |
### Limitations
|
| 112 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|