---
language:
- vi
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:6066
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: splendor1811/BGE-base-banking-ONE-v0106
widget:
- source_sentence: HUYNHDEANHKHOA COMPANY LIMITED
sentences:
- SHYH JIUH INDUSTRIAL CO.,LTD
- KENG HIN ENGINEERING CO
- CTTNHHTHIETKE MYTHUAT VA TINHOC HUYNHDEANHKHOA
- source_sentence: YUEQING RONGSHENG ELECTRICAL APPLIANCES LTD.
sentences:
- RAUCH FRUCHTSÄFTE GMBH & CO OG
- YUEQING RONGSHENG INTRODUCED ELECTRICAL APPLIANCES CO., LTD
- BACH MY TRADING, SERVICES AND CONSTRUCTION COMPANY LIMITED
- source_sentence: ZHENFA TEXTILE COMPANY, LIMITED
sentences:
- DATANI LOGISTICS COMPANY LIMITED
- Quan Pham Electrical Equipment Co., Ltd.
- ZHENFA TEXTILE CO., LIMITED
- source_sentence: CONG TY TNHH KY THUAT VSI
sentences:
- CTCAD SERVICES TRADING COMPANY LIMITED
- CHAKTOMUK RESOURCES SUPPLY IMPORT EXPORT CO.,LTD
- VSI ENGINEERING COMPANY LIMITED
- source_sentence: VIET ANH DUONG CO., LTD
sentences:
- ROCK GRANITES
- CTY TNHH VIET ANH DUONG
- SOVAN SEUNGDEN CO.,LTD
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE-mapping-tool
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.844213649851632
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9169139465875371
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9540059347181009
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.983679525222552
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.844213649851632
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.8209693372898119
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.8172106824925816
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.7956973293768547
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04068450507619647
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.11841496782149599
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.1962584728163363
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.38186014447142047
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8055555734311861
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8893975790118221
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8042214818897099
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8501483679525222
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9124629080118695
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9525222551928784
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.983679525222552
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8501483679525222
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.8199802176063304
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.8160237388724035
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.7958456973293768
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.040903524434681704
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.1182842627204645
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.1959109963561002
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.38199438214275006
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8060214331494838
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8915365503273512
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8045717264189338
name: Cosine Map@100
---
# BGE-mapping-tool
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [splendor1811/BGE-base-banking-ONE-v0106](https://huggingface.co/splendor1811/BGE-base-banking-ONE-v0106) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [splendor1811/BGE-base-banking-ONE-v0106](https://huggingface.co/splendor1811/BGE-base-banking-ONE-v0106)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** vi
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("splendor1811/BGE-mapping-tool_epoch3")
# Run inference
sentences = [
'VIET ANH DUONG CO., LTD',
'CTY TNHH VIET ANH DUONG',
'ROCK GRANITES',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.9738, -0.0072],
# [ 0.9738, 1.0000, 0.0011],
# [-0.0072, 0.0011, 1.0000]])
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 1024
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8442 |
| cosine_accuracy@3 | 0.9169 |
| cosine_accuracy@5 | 0.954 |
| cosine_accuracy@10 | 0.9837 |
| cosine_precision@1 | 0.8442 |
| cosine_precision@3 | 0.821 |
| cosine_precision@5 | 0.8172 |
| cosine_precision@10 | 0.7957 |
| cosine_recall@1 | 0.0407 |
| cosine_recall@3 | 0.1184 |
| cosine_recall@5 | 0.1963 |
| cosine_recall@10 | 0.3819 |
| **cosine_ndcg@10** | **0.8056** |
| cosine_mrr@10 | 0.8894 |
| cosine_map@100 | 0.8042 |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 768
}
```
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.8501 |
| cosine_accuracy@3 | 0.9125 |
| cosine_accuracy@5 | 0.9525 |
| cosine_accuracy@10 | 0.9837 |
| cosine_precision@1 | 0.8501 |
| cosine_precision@3 | 0.82 |
| cosine_precision@5 | 0.816 |
| cosine_precision@10 | 0.7958 |
| cosine_recall@1 | 0.0409 |
| cosine_recall@3 | 0.1183 |
| cosine_recall@5 | 0.1959 |
| cosine_recall@10 | 0.382 |
| **cosine_ndcg@10** | **0.806** |
| cosine_mrr@10 | 0.8915 |
| cosine_map@100 | 0.8046 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,066 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
ZHONGSHAN CHINHAO MOLD HARDWARE COMPANY LIMITED | ZHONGSHAN CHINHAO MOLD HARDWARE CO., LTD. |
| Changshu Longte International Trade Co., Ltd | CHANGSHU LONGTE INTERNATIONAL TRADE CO., LTD |
| ACT CHEMICAL AND THERAPEUTIC LABORATORIES SARL | MEDICAL SUPPLIES PHARMACEUTICALS & EQUIPMENT |
* Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768
],
"matryoshka_weights": [
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters