Rico
commited on
Commit
·
7bf5511
1
Parent(s):
5fe5f2a
[UPDATE] update readme and files
Browse files- README.md +5 -15
- docs/deploy_guidance.md +210 -0
- figures/stepfun-logo.png +0 -0
README.md
CHANGED
|
@@ -1,10 +1,6 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
library_name: transformers
|
| 4 |
-
---
|
| 5 |
<div align="center">
|
| 6 |
<picture>
|
| 7 |
-
<img src="stepfun-logo.png" width="30%" alt="StepFun: Cost-Effective Multimodal Intelligence">
|
| 8 |
</picture>
|
| 9 |
</div>
|
| 10 |
|
|
@@ -16,14 +12,14 @@ library_name: transformers
|
|
| 16 |
</div>
|
| 17 |
|
| 18 |
<div align="center" style="line-height: 1;">
|
| 19 |
-
<a href="https://github.com/stepfun-ai/Step3" target="_blank"><img alt="
|
| 20 |
<a href="https://www.modelscope.cn/models/stepfun-ai/step3" target="_blank"><img alt="ModelScope" src="https://img.shields.io/badge/🤖ModelScope-StepFun-ffc107?color=7963eb&logoColor=white"/></a>
|
| 21 |
<a href="https://x.com/StepFun_ai" target="_blank"><img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-StepFun-white?logo=x&logoColor=white"/></a>
|
| 22 |
</div>
|
| 23 |
|
| 24 |
<div align="center" style="line-height: 1;">
|
| 25 |
<a href="https://discord.com/invite/XHheP5Fn" target="_blank"><img alt="Discord" src="https://img.shields.io/badge/Discord-StepFun-white?logo=discord&logoColor=white"/></a>
|
| 26 |
-
<a href="LICENSE"><img alt="License" src="https://img.shields.io/badge/License-Apache%202.0-blue?&color=blue"/></a>
|
| 27 |
</div>
|
| 28 |
|
| 29 |
<div align="center">
|
|
@@ -333,11 +329,6 @@ Note: Parts of the evaluation results are reproduced using the same settings.
|
|
| 333 |
> [!Note]
|
| 334 |
> Step3's API is accessible at https://platform.stepfun.com/, where we offer OpenAI-compatible API for you.
|
| 335 |
|
| 336 |
-
|
| 337 |
-
> You can access Step3's API on https://platform.stepfun.com/ , we provide OpenAI/Anthropic-compatible API for you.
|
| 338 |
-
>
|
| 339 |
-
|
| 340 |
-
|
| 341 |
### Inference with Hugging Face Transformers
|
| 342 |
|
| 343 |
We introduce how to use our model at inference stage using transformers library. It is recommended to use python=3.10, torch>=2.1.0, and transformers=4.54.0 as the development environment.We currently only support bf16 inference, and multi-patch is supported by default. This behavior is aligned with vllm and sglang.
|
|
@@ -387,7 +378,7 @@ print(decoded)
|
|
| 387 |
### Inference with vLLM and SGLang
|
| 388 |
|
| 389 |
|
| 390 |
-
Our model checkpoints are stored in bf16 and block-fp8 format, you can find it on [Huggingface](https://huggingface.co/stepfun-ai/step3).
|
| 391 |
|
| 392 |
Currently, it is recommended to run Step3 on the following inference engines:
|
| 393 |
|
|
@@ -419,5 +410,4 @@ Both the code repository and the model weights are released under the [Apache Li
|
|
| 419 |
author={StepFun Team},
|
| 420 |
url={https://stepfun.ai/research/step3},
|
| 421 |
}
|
| 422 |
-
```
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
<div align="center">
|
| 2 |
<picture>
|
| 3 |
+
<img src="figures/stepfun-logo.png" width="30%" alt="StepFun: Cost-Effective Multimodal Intelligence">
|
| 4 |
</picture>
|
| 5 |
</div>
|
| 6 |
|
|
|
|
| 12 |
</div>
|
| 13 |
|
| 14 |
<div align="center" style="line-height: 1;">
|
| 15 |
+
<a href="https://github.com/stepfun-ai/Step3" target="_blank"><img alt="GitHub" src="https://img.shields.io/badge/GitHub-StepFun-white?logo=github&logoColor=white"/></a>
|
| 16 |
<a href="https://www.modelscope.cn/models/stepfun-ai/step3" target="_blank"><img alt="ModelScope" src="https://img.shields.io/badge/🤖ModelScope-StepFun-ffc107?color=7963eb&logoColor=white"/></a>
|
| 17 |
<a href="https://x.com/StepFun_ai" target="_blank"><img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-StepFun-white?logo=x&logoColor=white"/></a>
|
| 18 |
</div>
|
| 19 |
|
| 20 |
<div align="center" style="line-height: 1;">
|
| 21 |
<a href="https://discord.com/invite/XHheP5Fn" target="_blank"><img alt="Discord" src="https://img.shields.io/badge/Discord-StepFun-white?logo=discord&logoColor=white"/></a>
|
| 22 |
+
<a href="https://huggingface.co/stepfun-ai/step3/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/badge/License-Apache%202.0-blue?&color=blue"/></a>
|
| 23 |
</div>
|
| 24 |
|
| 25 |
<div align="center">
|
|
|
|
| 329 |
> [!Note]
|
| 330 |
> Step3's API is accessible at https://platform.stepfun.com/, where we offer OpenAI-compatible API for you.
|
| 331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
### Inference with Hugging Face Transformers
|
| 333 |
|
| 334 |
We introduce how to use our model at inference stage using transformers library. It is recommended to use python=3.10, torch>=2.1.0, and transformers=4.54.0 as the development environment.We currently only support bf16 inference, and multi-patch is supported by default. This behavior is aligned with vllm and sglang.
|
|
|
|
| 378 |
### Inference with vLLM and SGLang
|
| 379 |
|
| 380 |
|
| 381 |
+
Our model checkpoints are stored in bf16 and block-fp8 format, you can find it on [Huggingface](https://huggingface.co/collections/stepfun-ai/step3-688a3d652dbb45d868f9d42d).
|
| 382 |
|
| 383 |
Currently, it is recommended to run Step3 on the following inference engines:
|
| 384 |
|
|
|
|
| 410 |
author={StepFun Team},
|
| 411 |
url={https://stepfun.ai/research/step3},
|
| 412 |
}
|
| 413 |
+
```
|
|
|
docs/deploy_guidance.md
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Step3 Model Deployment Guide
|
| 2 |
+
|
| 3 |
+
This document provides deployment guidance for Step3 model.
|
| 4 |
+
|
| 5 |
+
Currently, our open-source deployment guide only includes TP and DP+TP deployment methods. The AFD (Attn-FFN Disaggregated) approach mentioned in our [paper](https://arxiv.org/abs/2507.19427) is still under joint development with the open-source community to achieve optimal performance. Please stay tuned for updates on our open-source progress.
|
| 6 |
+
|
| 7 |
+
## Overview
|
| 8 |
+
|
| 9 |
+
Step3 is a 321B-parameter VLM with hardware-aware model-system co-design optimized for minimizing decoding costs.
|
| 10 |
+
|
| 11 |
+
For out fp8 version, about 326G memory is required.
|
| 12 |
+
The smallest deployment unit for this version is 8xH20 with either Tensor Parallel (TP) or Data Parallel + Tensor Parallel (DP+TP).
|
| 13 |
+
|
| 14 |
+
For out bf16 version, about 642G memory is required.
|
| 15 |
+
The smallest deployment unit for this version is 16xH20 with either Tensor Parallel (TP) or Data Parallel + Tensor Parallel (DP+TP).
|
| 16 |
+
|
| 17 |
+
## Deployment Options
|
| 18 |
+
|
| 19 |
+
### vLLM Deployment
|
| 20 |
+
|
| 21 |
+
Please make sure to use nightly version of vllm. For details, please refer to [vllm nightly installation doc](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html#pre-built-wheels).
|
| 22 |
+
```bash
|
| 23 |
+
uv pip install -U vllm \
|
| 24 |
+
--torch-backend=auto \
|
| 25 |
+
--extra-index-url https://wheels.vllm.ai/nightly
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
We recommend to use the following command to deploy the model:
|
| 29 |
+
|
| 30 |
+
**`max_num_batched_tokens` should be larger than 4096. If not set, the default value is 8192.**
|
| 31 |
+
|
| 32 |
+
#### BF16 Model
|
| 33 |
+
##### Tensor Parallelism(Serving on 16xH20):
|
| 34 |
+
|
| 35 |
+
```bash
|
| 36 |
+
# start ray on node 0 and node 1
|
| 37 |
+
|
| 38 |
+
# node 0:
|
| 39 |
+
vllm serve /path/to/step3 \
|
| 40 |
+
--tensor-parallel-size 16 \
|
| 41 |
+
--reasoning-parser step3 \
|
| 42 |
+
--enable-auto-tool-choice \
|
| 43 |
+
--tool-call-parser step3 \
|
| 44 |
+
--trust-remote-code \
|
| 45 |
+
--port $PORT_SERVING
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
###### Data Parallelism + Tensor Parallelism(Serving on 16xH20):
|
| 49 |
+
Step3 only has single kv head, so attention data parallelism can be adopted to reduce the kv cache memory usage.
|
| 50 |
+
|
| 51 |
+
```bash
|
| 52 |
+
# start ray on node 0 and node 1
|
| 53 |
+
|
| 54 |
+
# node 0:
|
| 55 |
+
vllm serve /path/to/step3 \
|
| 56 |
+
--data-parallel-size 16 \
|
| 57 |
+
--tensor-parallel-size 1 \
|
| 58 |
+
--reasoning-parser step3 \
|
| 59 |
+
--enable-auto-tool-choice \
|
| 60 |
+
--tool-call-parser step3 \
|
| 61 |
+
--trust-remote-code \
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
#### FP8 Model
|
| 65 |
+
##### Tensor Parallelism(Serving on 8xH20):
|
| 66 |
+
|
| 67 |
+
```bash
|
| 68 |
+
vllm serve /path/to/step3-fp8 \
|
| 69 |
+
--tensor-parallel-size 8 \
|
| 70 |
+
--reasoning-parser step3 \
|
| 71 |
+
--enable-auto-tool-choice \
|
| 72 |
+
--tool-call-parser step3 \
|
| 73 |
+
--gpu-memory-utilization 0.85 \
|
| 74 |
+
--trust-remote-code \
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
###### Data Parallelism + Tensor Parallelism(Serving on 8xH20):
|
| 78 |
+
|
| 79 |
+
```bash
|
| 80 |
+
vllm serve /path/to/step3-fp8 \
|
| 81 |
+
--data-parallel-size 8 \
|
| 82 |
+
--tensor-parallel-size 1 \
|
| 83 |
+
--reasoning-parser step3 \
|
| 84 |
+
--enable-auto-tool-choice \
|
| 85 |
+
--tool-call-parser step3 \
|
| 86 |
+
--trust-remote-code \
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
##### Key parameter notes:
|
| 91 |
+
|
| 92 |
+
* `reasoning-parser`: If enabled, reasoning content in the response will be parsed into a structured format.
|
| 93 |
+
* `tool-call-parser`: If enabled, tool call content in the response will be parsed into a structured format.
|
| 94 |
+
|
| 95 |
+
### SGLang Deployment
|
| 96 |
+
|
| 97 |
+
0.4.10 or later is needed for SGLang.
|
| 98 |
+
|
| 99 |
+
```
|
| 100 |
+
pip3 install "sglang[all]>=0.4.10"
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
#### BF16 Model
|
| 104 |
+
##### Tensor Parallelism(Serving on 16xH20):
|
| 105 |
+
|
| 106 |
+
```bash
|
| 107 |
+
# start ray on node 0 and node 1
|
| 108 |
+
|
| 109 |
+
# node 0:
|
| 110 |
+
python -m sglang.launch_server \
|
| 111 |
+
--model-path /path/to/step3 \
|
| 112 |
+
--trust-remote-code \
|
| 113 |
+
--tool-call-parser step3 \
|
| 114 |
+
--reasoning-parser step3 \
|
| 115 |
+
--tp 16
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
#### FP8 Model
|
| 119 |
+
##### Tensor Parallelism(Serving on 8xH20):
|
| 120 |
+
|
| 121 |
+
```bash
|
| 122 |
+
python -m sglang.launch_server \
|
| 123 |
+
--model-path /path/to/step3-fp8 \
|
| 124 |
+
--trust-remote-code \
|
| 125 |
+
--tool-call-parser step3 \
|
| 126 |
+
--reasoning-parser step3-fp8 \
|
| 127 |
+
--tp 8
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
### TensorRT-LLM Deployment
|
| 132 |
+
|
| 133 |
+
[Coming soon...]
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
## Client Request Examples
|
| 137 |
+
|
| 138 |
+
Then you can use the chat API as below:
|
| 139 |
+
```python
|
| 140 |
+
from openai import OpenAI
|
| 141 |
+
|
| 142 |
+
# Set OpenAI's API key and API base to use vLLM's API server.
|
| 143 |
+
openai_api_key = "EMPTY"
|
| 144 |
+
openai_api_base = "http://localhost:8000/v1"
|
| 145 |
+
|
| 146 |
+
client = OpenAI(
|
| 147 |
+
api_key=openai_api_key,
|
| 148 |
+
base_url=openai_api_base,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
chat_response = client.chat.completions.create(
|
| 152 |
+
model="step3",
|
| 153 |
+
messages=[
|
| 154 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 155 |
+
{
|
| 156 |
+
"role": "user",
|
| 157 |
+
"content": [
|
| 158 |
+
{
|
| 159 |
+
"type": "image_url",
|
| 160 |
+
"image_url": {
|
| 161 |
+
"url": "https://xxxxx.png"
|
| 162 |
+
},
|
| 163 |
+
},
|
| 164 |
+
{"type": "text", "text": "Please describe the image."},
|
| 165 |
+
],
|
| 166 |
+
},
|
| 167 |
+
],
|
| 168 |
+
)
|
| 169 |
+
print("Chat response:", chat_response)
|
| 170 |
+
```
|
| 171 |
+
You can also upload base64-encoded local images:
|
| 172 |
+
|
| 173 |
+
```python
|
| 174 |
+
import base64
|
| 175 |
+
from openai import OpenAI
|
| 176 |
+
# Set OpenAI's API key and API base to use vLLM's API server.
|
| 177 |
+
openai_api_key = "EMPTY"
|
| 178 |
+
openai_api_base = "http://localhost:8000/v1"
|
| 179 |
+
client = OpenAI(
|
| 180 |
+
api_key=openai_api_key,
|
| 181 |
+
base_url=openai_api_base,
|
| 182 |
+
)
|
| 183 |
+
image_path = "/path/to/local/image.png"
|
| 184 |
+
with open(image_path, "rb") as f:
|
| 185 |
+
encoded_image = base64.b64encode(f.read())
|
| 186 |
+
encoded_image_text = encoded_image.decode("utf-8")
|
| 187 |
+
base64_step = f"data:image;base64,{encoded_image_text}"
|
| 188 |
+
chat_response = client.chat.completions.create(
|
| 189 |
+
model="step3",
|
| 190 |
+
messages=[
|
| 191 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 192 |
+
{
|
| 193 |
+
"role": "user",
|
| 194 |
+
"content": [
|
| 195 |
+
{
|
| 196 |
+
"type": "image_url",
|
| 197 |
+
"image_url": {
|
| 198 |
+
"url": base64_step
|
| 199 |
+
},
|
| 200 |
+
},
|
| 201 |
+
{"type": "text", "text": "Please describe the image."},
|
| 202 |
+
],
|
| 203 |
+
},
|
| 204 |
+
],
|
| 205 |
+
)
|
| 206 |
+
print("Chat response:", chat_response)
|
| 207 |
+
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
Note: In our image preprocessing pipeline, we implement a multi-patch mechanism to handle large images. If the input image exceeds 728x728 pixels, the system will automatically apply image cropping logic to get patches of the image.
|
figures/stepfun-logo.png
ADDED
|