Upload tokenization_c_cubed.py
Browse files- tokenization_c_cubed.py +213 -0
tokenization_c_cubed.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
"""Tokenization classes for Ccubed"""
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
from typing import List, Union, Optional
|
| 7 |
+
from transformers import AutoTokenizer
|
| 8 |
+
from transformers.processing_utils import ProcessorMixin
|
| 9 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 10 |
+
from transformers.utils import logging
|
| 11 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 12 |
+
|
| 13 |
+
logger = logging.get_logger(__name__)
|
| 14 |
+
|
| 15 |
+
class CcubedDualTokenizer(ProcessorMixin):
|
| 16 |
+
r"""
|
| 17 |
+
CcubedDualTokenizer is tokenizer for the Ccubed model. It processes context and main text.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
context_tokenizer ([`PreTrainedTokenizer`]):
|
| 21 |
+
The tokenizer for context.
|
| 22 |
+
text_tokenizer ([`PreTrainedTokenizer`]):
|
| 23 |
+
The tokenizer for main text.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
attributes = ["context_tokenizer", "text_tokenizer"]
|
| 27 |
+
context_tokenizer_class = "AutoTokenizer"
|
| 28 |
+
text_tokenizer_class = "AutoTokenizer"
|
| 29 |
+
|
| 30 |
+
def __init__(self, context_tokenizer=None, text_tokenizer=None):
|
| 31 |
+
super().__init__(context_tokenizer, text_tokenizer)
|
| 32 |
+
|
| 33 |
+
@classmethod
|
| 34 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
|
| 35 |
+
"""
|
| 36 |
+
Load both context and text tokenizers from a given repository.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
pretrained_model_name_or_path (str): The name or path of the Hugging Face repository.
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
CcubedDualTokenizer: An instance of the tokenizer class.
|
| 43 |
+
"""
|
| 44 |
+
# Load context_tokenizer from 'context_tokenizer' directory
|
| 45 |
+
context_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
|
| 46 |
+
subfolder="context_tokenizer",
|
| 47 |
+
**kwargs
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Load text_tokenizer from 'text_tokenizer' directory
|
| 51 |
+
text_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
|
| 52 |
+
subfolder="text_tokenizer",
|
| 53 |
+
**kwargs
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Return a new instance of CcubedDualTokenizer with both tokenizers loaded
|
| 57 |
+
return cls(context_tokenizer=context_tokenizer, text_tokenizer=text_tokenizer)
|
| 58 |
+
|
| 59 |
+
def save_pretrained(self, save_directory: str, **kwargs):
|
| 60 |
+
"""
|
| 61 |
+
Save the tokenizer to a directory, so that it can be reloaded using the `from_pretrained` class method.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
save_directory (str): Directory to which to save.
|
| 65 |
+
"""
|
| 66 |
+
# Save context tokenizer
|
| 67 |
+
context_save_dir = os.path.join(save_directory, 'context_tokenizer')
|
| 68 |
+
self.context_tokenizer.save_pretrained(context_save_dir, **kwargs)
|
| 69 |
+
|
| 70 |
+
# Save text tokenizer
|
| 71 |
+
text_save_dir = os.path.join(save_directory, 'text_tokenizer')
|
| 72 |
+
self.text_tokenizer.save_pretrained(text_save_dir, **kwargs)
|
| 73 |
+
|
| 74 |
+
# Save tokenizer config
|
| 75 |
+
tokenizer_config = {
|
| 76 |
+
"tokenizer_class": self.__class__.__name__,
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
with open(os.path.join(save_directory, 'tokenizer_config.json'), 'w', encoding='utf-8') as f:
|
| 80 |
+
json.dump(tokenizer_config, f, ensure_ascii=False)
|
| 81 |
+
|
| 82 |
+
def __call__(
|
| 83 |
+
self,
|
| 84 |
+
context: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 85 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 86 |
+
return_tensors: Optional[str] = None,
|
| 87 |
+
**kwargs
|
| 88 |
+
) -> BatchFeature:
|
| 89 |
+
"""
|
| 90 |
+
Main method to prepare inputs for the Ccubed model.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
context: Context text input.
|
| 94 |
+
text: Main text input.
|
| 95 |
+
return_tensors: Type of tensors to return.
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
BatchFeature: A BatchFeature object containing model inputs.
|
| 99 |
+
"""
|
| 100 |
+
if context is None and text is None:
|
| 101 |
+
raise ValueError("You must provide either context or text.")
|
| 102 |
+
|
| 103 |
+
features = {}
|
| 104 |
+
|
| 105 |
+
if context is not None:
|
| 106 |
+
context_features = self.context_tokenizer(
|
| 107 |
+
context,
|
| 108 |
+
return_tensors=return_tensors,
|
| 109 |
+
**kwargs
|
| 110 |
+
)
|
| 111 |
+
features.update({f"context_{k}": v for k, v in context_features.items()})
|
| 112 |
+
|
| 113 |
+
if text is not None:
|
| 114 |
+
text_features = self.text_tokenizer(
|
| 115 |
+
text,
|
| 116 |
+
return_tensors=return_tensors,
|
| 117 |
+
**kwargs
|
| 118 |
+
)
|
| 119 |
+
features.update({k: v for k, v in text_features.items()})
|
| 120 |
+
|
| 121 |
+
return BatchFeature(data=features, tensor_type=return_tensors)
|
| 122 |
+
|
| 123 |
+
def pad(
|
| 124 |
+
self,
|
| 125 |
+
encoded_inputs,
|
| 126 |
+
padding=True,
|
| 127 |
+
max_length=None,
|
| 128 |
+
return_tensors=None,
|
| 129 |
+
**kwargs
|
| 130 |
+
):
|
| 131 |
+
"""
|
| 132 |
+
Pads the encoded inputs to the maximum length in the batch.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
encoded_inputs: A list of dictionaries containing context and text features.
|
| 136 |
+
padding: Whether to pad sequences.
|
| 137 |
+
max_length: Maximum length for padding.
|
| 138 |
+
return_tensors: Type of tensors to return.
|
| 139 |
+
|
| 140 |
+
Returns:
|
| 141 |
+
A dictionary with padded sequences.
|
| 142 |
+
"""
|
| 143 |
+
# Separate context and text features
|
| 144 |
+
context_features = []
|
| 145 |
+
text_features = []
|
| 146 |
+
|
| 147 |
+
for feature in encoded_inputs:
|
| 148 |
+
# Extract context features
|
| 149 |
+
context_feature = {
|
| 150 |
+
k[len("context_"):]: v
|
| 151 |
+
for k, v in feature.items()
|
| 152 |
+
if k.startswith("context_")
|
| 153 |
+
}
|
| 154 |
+
if context_feature:
|
| 155 |
+
context_features.append(context_feature)
|
| 156 |
+
# Extract text features
|
| 157 |
+
text_feature = {
|
| 158 |
+
k: v
|
| 159 |
+
for k, v in feature.items()
|
| 160 |
+
if not k.startswith("context_")
|
| 161 |
+
}
|
| 162 |
+
if text_feature:
|
| 163 |
+
text_features.append(text_feature)
|
| 164 |
+
|
| 165 |
+
# Pad context features
|
| 166 |
+
if context_features:
|
| 167 |
+
context_padded = self.context_tokenizer.pad(
|
| 168 |
+
context_features,
|
| 169 |
+
padding=padding,
|
| 170 |
+
max_length=max_length,
|
| 171 |
+
return_tensors=return_tensors,
|
| 172 |
+
**kwargs.get("context_kwargs", {})
|
| 173 |
+
)
|
| 174 |
+
context_padded = {f"context_{k}": v for k, v in context_padded.items()}
|
| 175 |
+
else:
|
| 176 |
+
context_padded = {}
|
| 177 |
+
|
| 178 |
+
# Pad text features
|
| 179 |
+
if text_features:
|
| 180 |
+
text_padded = self.text_tokenizer.pad(
|
| 181 |
+
text_features,
|
| 182 |
+
padding=padding,
|
| 183 |
+
max_length=max_length,
|
| 184 |
+
return_tensors=return_tensors,
|
| 185 |
+
**kwargs.get("text_kwargs", {})
|
| 186 |
+
)
|
| 187 |
+
text_padded = {k: v for k, v in text_padded.items()}
|
| 188 |
+
else:
|
| 189 |
+
text_padded = {}
|
| 190 |
+
|
| 191 |
+
# Combine padded features
|
| 192 |
+
padded_features = {**context_padded, **text_padded}
|
| 193 |
+
|
| 194 |
+
return BatchFeature(data=padded_features, tensor_type=return_tensors)
|
| 195 |
+
|
| 196 |
+
def batch_decode(self, *args, **kwargs):
|
| 197 |
+
"""
|
| 198 |
+
Calls the batch_decode method of the text_tokenizer.
|
| 199 |
+
"""
|
| 200 |
+
return self.text_tokenizer.batch_decode(*args, **kwargs)
|
| 201 |
+
|
| 202 |
+
def decode(self, *args, **kwargs):
|
| 203 |
+
"""
|
| 204 |
+
Calls the decode method of the text_tokenizer.
|
| 205 |
+
"""
|
| 206 |
+
return self.text_tokenizer.decode(*args, **kwargs)
|
| 207 |
+
|
| 208 |
+
@property
|
| 209 |
+
def model_input_names(self):
|
| 210 |
+
"""
|
| 211 |
+
Returns the model input names.
|
| 212 |
+
"""
|
| 213 |
+
return list(dict.fromkeys(self.context_tokenizer.model_input_names + self.text_tokenizer.model_input_names))
|