| { | |
| "best_metric": null, | |
| "best_model_checkpoint": null, | |
| "epoch": 3.0, | |
| "eval_steps": 500, | |
| "global_step": 267, | |
| "is_hyper_param_search": false, | |
| "is_local_process_zero": true, | |
| "is_world_process_zero": true, | |
| "log_history": [ | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 0.0, | |
| "loss": 1.2395, | |
| "step": 1 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 1.0515495892857625e-06, | |
| "loss": 1.2109, | |
| "step": 2 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 1.666666666666667e-06, | |
| "loss": 1.2171, | |
| "step": 3 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2.103099178571525e-06, | |
| "loss": 1.1818, | |
| "step": 4 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2.4416225345298787e-06, | |
| "loss": 1.1623, | |
| "step": 5 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2.7182162559524295e-06, | |
| "loss": 1.1307, | |
| "step": 6 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2.9520729152690373e-06, | |
| "loss": 1.1187, | |
| "step": 7 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 3.1546487678572874e-06, | |
| "loss": 1.1144, | |
| "step": 8 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 3.333333333333334e-06, | |
| "loss": 1.0377, | |
| "step": 9 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 3.493172123815642e-06, | |
| "loss": 1.0311, | |
| "step": 10 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 3.637763897740231e-06, | |
| "loss": 1.0227, | |
| "step": 11 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 3.769765845238192e-06, | |
| "loss": 1.0224, | |
| "step": 12 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 3.891195865787989e-06, | |
| "loss": 0.9782, | |
| "step": 13 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 4.003622504554799e-06, | |
| "loss": 0.981, | |
| "step": 14 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 4.108289201196546e-06, | |
| "loss": 0.9871, | |
| "step": 15 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 4.20619835714305e-06, | |
| "loss": 0.9874, | |
| "step": 16 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 4.29816987193761e-06, | |
| "loss": 0.9525, | |
| "step": 17 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 4.384882922619096e-06, | |
| "loss": 0.9614, | |
| "step": 18 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 4.466906432077293e-06, | |
| "loss": 0.9527, | |
| "step": 19 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 4.5447217131014036e-06, | |
| "loss": 0.9404, | |
| "step": 20 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 4.618739581935704e-06, | |
| "loss": 0.9461, | |
| "step": 21 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 4.689313487025993e-06, | |
| "loss": 0.8768, | |
| "step": 22 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 4.756749717000453e-06, | |
| "loss": 0.8974, | |
| "step": 23 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 4.821315434523955e-06, | |
| "loss": 0.9084, | |
| "step": 24 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 4.883245069059757e-06, | |
| "loss": 0.9043, | |
| "step": 25 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 4.942745455073751e-06, | |
| "loss": 0.9133, | |
| "step": 26 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8901, | |
| "step": 27 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8853, | |
| "step": 28 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 5e-06, | |
| "loss": 0.9018, | |
| "step": 29 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8816, | |
| "step": 30 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8913, | |
| "step": 31 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8977, | |
| "step": 32 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8924, | |
| "step": 33 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8968, | |
| "step": 34 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8943, | |
| "step": 35 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8473, | |
| "step": 36 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8422, | |
| "step": 37 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8431, | |
| "step": 38 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 5e-06, | |
| "loss": 0.881, | |
| "step": 39 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8746, | |
| "step": 40 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8698, | |
| "step": 41 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8539, | |
| "step": 42 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8405, | |
| "step": 43 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8629, | |
| "step": 44 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8723, | |
| "step": 45 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8686, | |
| "step": 46 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8587, | |
| "step": 47 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8751, | |
| "step": 48 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8564, | |
| "step": 49 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8286, | |
| "step": 50 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8606, | |
| "step": 51 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8463, | |
| "step": 52 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8392, | |
| "step": 53 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8416, | |
| "step": 54 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8546, | |
| "step": 55 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8399, | |
| "step": 56 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8406, | |
| "step": 57 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8361, | |
| "step": 58 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 5e-06, | |
| "loss": 0.835, | |
| "step": 59 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8269, | |
| "step": 60 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8191, | |
| "step": 61 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8406, | |
| "step": 62 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8486, | |
| "step": 63 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8433, | |
| "step": 64 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8283, | |
| "step": 65 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8113, | |
| "step": 66 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8228, | |
| "step": 67 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8351, | |
| "step": 68 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 5e-06, | |
| "loss": 0.824, | |
| "step": 69 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8354, | |
| "step": 70 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 5e-06, | |
| "loss": 0.817, | |
| "step": 71 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8271, | |
| "step": 72 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8221, | |
| "step": 73 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8458, | |
| "step": 74 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8547, | |
| "step": 75 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8249, | |
| "step": 76 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8228, | |
| "step": 77 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8407, | |
| "step": 78 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8271, | |
| "step": 79 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8199, | |
| "step": 80 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8325, | |
| "step": 81 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8134, | |
| "step": 82 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8275, | |
| "step": 83 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8296, | |
| "step": 84 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8241, | |
| "step": 85 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8329, | |
| "step": 86 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8399, | |
| "step": 87 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 5e-06, | |
| "loss": 0.8028, | |
| "step": 88 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7865, | |
| "step": 89 | |
| }, | |
| { | |
| "epoch": 1.01, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7275, | |
| "step": 90 | |
| }, | |
| { | |
| "epoch": 1.02, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7466, | |
| "step": 91 | |
| }, | |
| { | |
| "epoch": 1.03, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7358, | |
| "step": 92 | |
| }, | |
| { | |
| "epoch": 1.04, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7381, | |
| "step": 93 | |
| }, | |
| { | |
| "epoch": 1.06, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7502, | |
| "step": 94 | |
| }, | |
| { | |
| "epoch": 1.07, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7431, | |
| "step": 95 | |
| }, | |
| { | |
| "epoch": 1.08, | |
| "learning_rate": 5e-06, | |
| "loss": 0.733, | |
| "step": 96 | |
| }, | |
| { | |
| "epoch": 1.09, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7073, | |
| "step": 97 | |
| }, | |
| { | |
| "epoch": 1.1, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7287, | |
| "step": 98 | |
| }, | |
| { | |
| "epoch": 1.11, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7415, | |
| "step": 99 | |
| }, | |
| { | |
| "epoch": 1.12, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7511, | |
| "step": 100 | |
| }, | |
| { | |
| "epoch": 1.13, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7342, | |
| "step": 101 | |
| }, | |
| { | |
| "epoch": 1.15, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7284, | |
| "step": 102 | |
| }, | |
| { | |
| "epoch": 1.16, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7386, | |
| "step": 103 | |
| }, | |
| { | |
| "epoch": 1.17, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7496, | |
| "step": 104 | |
| }, | |
| { | |
| "epoch": 1.18, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7251, | |
| "step": 105 | |
| }, | |
| { | |
| "epoch": 1.19, | |
| "learning_rate": 5e-06, | |
| "loss": 0.724, | |
| "step": 106 | |
| }, | |
| { | |
| "epoch": 1.2, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7323, | |
| "step": 107 | |
| }, | |
| { | |
| "epoch": 1.21, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7379, | |
| "step": 108 | |
| }, | |
| { | |
| "epoch": 1.22, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7255, | |
| "step": 109 | |
| }, | |
| { | |
| "epoch": 1.24, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7535, | |
| "step": 110 | |
| }, | |
| { | |
| "epoch": 1.25, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7613, | |
| "step": 111 | |
| }, | |
| { | |
| "epoch": 1.26, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7386, | |
| "step": 112 | |
| }, | |
| { | |
| "epoch": 1.27, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7346, | |
| "step": 113 | |
| }, | |
| { | |
| "epoch": 1.28, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7472, | |
| "step": 114 | |
| }, | |
| { | |
| "epoch": 1.29, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7364, | |
| "step": 115 | |
| }, | |
| { | |
| "epoch": 1.3, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7352, | |
| "step": 116 | |
| }, | |
| { | |
| "epoch": 1.31, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7231, | |
| "step": 117 | |
| }, | |
| { | |
| "epoch": 1.33, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7409, | |
| "step": 118 | |
| }, | |
| { | |
| "epoch": 1.34, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7339, | |
| "step": 119 | |
| }, | |
| { | |
| "epoch": 1.35, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7184, | |
| "step": 120 | |
| }, | |
| { | |
| "epoch": 1.36, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7254, | |
| "step": 121 | |
| }, | |
| { | |
| "epoch": 1.37, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7193, | |
| "step": 122 | |
| }, | |
| { | |
| "epoch": 1.38, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7309, | |
| "step": 123 | |
| }, | |
| { | |
| "epoch": 1.39, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7609, | |
| "step": 124 | |
| }, | |
| { | |
| "epoch": 1.4, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7334, | |
| "step": 125 | |
| }, | |
| { | |
| "epoch": 1.42, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7363, | |
| "step": 126 | |
| }, | |
| { | |
| "epoch": 1.43, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7294, | |
| "step": 127 | |
| }, | |
| { | |
| "epoch": 1.44, | |
| "learning_rate": 5e-06, | |
| "loss": 0.732, | |
| "step": 128 | |
| }, | |
| { | |
| "epoch": 1.45, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7407, | |
| "step": 129 | |
| }, | |
| { | |
| "epoch": 1.46, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7171, | |
| "step": 130 | |
| }, | |
| { | |
| "epoch": 1.47, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7301, | |
| "step": 131 | |
| }, | |
| { | |
| "epoch": 1.48, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7126, | |
| "step": 132 | |
| }, | |
| { | |
| "epoch": 1.49, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7067, | |
| "step": 133 | |
| }, | |
| { | |
| "epoch": 1.51, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7291, | |
| "step": 134 | |
| }, | |
| { | |
| "epoch": 1.52, | |
| "learning_rate": 5e-06, | |
| "loss": 0.734, | |
| "step": 135 | |
| }, | |
| { | |
| "epoch": 1.53, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7242, | |
| "step": 136 | |
| }, | |
| { | |
| "epoch": 1.54, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7328, | |
| "step": 137 | |
| }, | |
| { | |
| "epoch": 1.55, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7544, | |
| "step": 138 | |
| }, | |
| { | |
| "epoch": 1.56, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7249, | |
| "step": 139 | |
| }, | |
| { | |
| "epoch": 1.57, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7123, | |
| "step": 140 | |
| }, | |
| { | |
| "epoch": 1.58, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7262, | |
| "step": 141 | |
| }, | |
| { | |
| "epoch": 1.6, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7297, | |
| "step": 142 | |
| }, | |
| { | |
| "epoch": 1.61, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7175, | |
| "step": 143 | |
| }, | |
| { | |
| "epoch": 1.62, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7, | |
| "step": 144 | |
| }, | |
| { | |
| "epoch": 1.63, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7228, | |
| "step": 145 | |
| }, | |
| { | |
| "epoch": 1.64, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7125, | |
| "step": 146 | |
| }, | |
| { | |
| "epoch": 1.65, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7229, | |
| "step": 147 | |
| }, | |
| { | |
| "epoch": 1.66, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7216, | |
| "step": 148 | |
| }, | |
| { | |
| "epoch": 1.67, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7343, | |
| "step": 149 | |
| }, | |
| { | |
| "epoch": 1.69, | |
| "learning_rate": 5e-06, | |
| "loss": 0.706, | |
| "step": 150 | |
| }, | |
| { | |
| "epoch": 1.7, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7111, | |
| "step": 151 | |
| }, | |
| { | |
| "epoch": 1.71, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7305, | |
| "step": 152 | |
| }, | |
| { | |
| "epoch": 1.72, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7272, | |
| "step": 153 | |
| }, | |
| { | |
| "epoch": 1.73, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7374, | |
| "step": 154 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7287, | |
| "step": 155 | |
| }, | |
| { | |
| "epoch": 1.75, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7277, | |
| "step": 156 | |
| }, | |
| { | |
| "epoch": 1.76, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7158, | |
| "step": 157 | |
| }, | |
| { | |
| "epoch": 1.78, | |
| "learning_rate": 5e-06, | |
| "loss": 0.728, | |
| "step": 158 | |
| }, | |
| { | |
| "epoch": 1.79, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7297, | |
| "step": 159 | |
| }, | |
| { | |
| "epoch": 1.8, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7226, | |
| "step": 160 | |
| }, | |
| { | |
| "epoch": 1.81, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7409, | |
| "step": 161 | |
| }, | |
| { | |
| "epoch": 1.82, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7516, | |
| "step": 162 | |
| }, | |
| { | |
| "epoch": 1.83, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7132, | |
| "step": 163 | |
| }, | |
| { | |
| "epoch": 1.84, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7359, | |
| "step": 164 | |
| }, | |
| { | |
| "epoch": 1.85, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7151, | |
| "step": 165 | |
| }, | |
| { | |
| "epoch": 1.87, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7157, | |
| "step": 166 | |
| }, | |
| { | |
| "epoch": 1.88, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7336, | |
| "step": 167 | |
| }, | |
| { | |
| "epoch": 1.89, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7079, | |
| "step": 168 | |
| }, | |
| { | |
| "epoch": 1.9, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7388, | |
| "step": 169 | |
| }, | |
| { | |
| "epoch": 1.91, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7248, | |
| "step": 170 | |
| }, | |
| { | |
| "epoch": 1.92, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7083, | |
| "step": 171 | |
| }, | |
| { | |
| "epoch": 1.93, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7075, | |
| "step": 172 | |
| }, | |
| { | |
| "epoch": 1.94, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7264, | |
| "step": 173 | |
| }, | |
| { | |
| "epoch": 1.96, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7199, | |
| "step": 174 | |
| }, | |
| { | |
| "epoch": 1.97, | |
| "learning_rate": 5e-06, | |
| "loss": 0.714, | |
| "step": 175 | |
| }, | |
| { | |
| "epoch": 1.98, | |
| "learning_rate": 5e-06, | |
| "loss": 0.716, | |
| "step": 176 | |
| }, | |
| { | |
| "epoch": 1.99, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7152, | |
| "step": 177 | |
| }, | |
| { | |
| "epoch": 2.0, | |
| "learning_rate": 5e-06, | |
| "loss": 0.7016, | |
| "step": 178 | |
| }, | |
| { | |
| "epoch": 2.01, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6147, | |
| "step": 179 | |
| }, | |
| { | |
| "epoch": 2.02, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5979, | |
| "step": 180 | |
| }, | |
| { | |
| "epoch": 2.03, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6181, | |
| "step": 181 | |
| }, | |
| { | |
| "epoch": 2.04, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6053, | |
| "step": 182 | |
| }, | |
| { | |
| "epoch": 2.06, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6088, | |
| "step": 183 | |
| }, | |
| { | |
| "epoch": 2.07, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5949, | |
| "step": 184 | |
| }, | |
| { | |
| "epoch": 2.08, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6015, | |
| "step": 185 | |
| }, | |
| { | |
| "epoch": 2.09, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5888, | |
| "step": 186 | |
| }, | |
| { | |
| "epoch": 2.1, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6106, | |
| "step": 187 | |
| }, | |
| { | |
| "epoch": 2.11, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5986, | |
| "step": 188 | |
| }, | |
| { | |
| "epoch": 2.12, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5915, | |
| "step": 189 | |
| }, | |
| { | |
| "epoch": 2.13, | |
| "learning_rate": 5e-06, | |
| "loss": 0.593, | |
| "step": 190 | |
| }, | |
| { | |
| "epoch": 2.15, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6051, | |
| "step": 191 | |
| }, | |
| { | |
| "epoch": 2.16, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5916, | |
| "step": 192 | |
| }, | |
| { | |
| "epoch": 2.17, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5984, | |
| "step": 193 | |
| }, | |
| { | |
| "epoch": 2.18, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5863, | |
| "step": 194 | |
| }, | |
| { | |
| "epoch": 2.19, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6006, | |
| "step": 195 | |
| }, | |
| { | |
| "epoch": 2.2, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5931, | |
| "step": 196 | |
| }, | |
| { | |
| "epoch": 2.21, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5818, | |
| "step": 197 | |
| }, | |
| { | |
| "epoch": 2.22, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5987, | |
| "step": 198 | |
| }, | |
| { | |
| "epoch": 2.24, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5704, | |
| "step": 199 | |
| }, | |
| { | |
| "epoch": 2.25, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5757, | |
| "step": 200 | |
| }, | |
| { | |
| "epoch": 2.26, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6003, | |
| "step": 201 | |
| }, | |
| { | |
| "epoch": 2.27, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5656, | |
| "step": 202 | |
| }, | |
| { | |
| "epoch": 2.28, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5807, | |
| "step": 203 | |
| }, | |
| { | |
| "epoch": 2.29, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6076, | |
| "step": 204 | |
| }, | |
| { | |
| "epoch": 2.3, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5916, | |
| "step": 205 | |
| }, | |
| { | |
| "epoch": 2.31, | |
| "learning_rate": 5e-06, | |
| "loss": 0.585, | |
| "step": 206 | |
| }, | |
| { | |
| "epoch": 2.33, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5925, | |
| "step": 207 | |
| }, | |
| { | |
| "epoch": 2.34, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6012, | |
| "step": 208 | |
| }, | |
| { | |
| "epoch": 2.35, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6171, | |
| "step": 209 | |
| }, | |
| { | |
| "epoch": 2.36, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6051, | |
| "step": 210 | |
| }, | |
| { | |
| "epoch": 2.37, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6039, | |
| "step": 211 | |
| }, | |
| { | |
| "epoch": 2.38, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5901, | |
| "step": 212 | |
| }, | |
| { | |
| "epoch": 2.39, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6036, | |
| "step": 213 | |
| }, | |
| { | |
| "epoch": 2.4, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5914, | |
| "step": 214 | |
| }, | |
| { | |
| "epoch": 2.42, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5896, | |
| "step": 215 | |
| }, | |
| { | |
| "epoch": 2.43, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5889, | |
| "step": 216 | |
| }, | |
| { | |
| "epoch": 2.44, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5947, | |
| "step": 217 | |
| }, | |
| { | |
| "epoch": 2.45, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6007, | |
| "step": 218 | |
| }, | |
| { | |
| "epoch": 2.46, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5879, | |
| "step": 219 | |
| }, | |
| { | |
| "epoch": 2.47, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5837, | |
| "step": 220 | |
| }, | |
| { | |
| "epoch": 2.48, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6065, | |
| "step": 221 | |
| }, | |
| { | |
| "epoch": 2.49, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5973, | |
| "step": 222 | |
| }, | |
| { | |
| "epoch": 2.51, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6104, | |
| "step": 223 | |
| }, | |
| { | |
| "epoch": 2.52, | |
| "learning_rate": 5e-06, | |
| "loss": 0.605, | |
| "step": 224 | |
| }, | |
| { | |
| "epoch": 2.53, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5819, | |
| "step": 225 | |
| }, | |
| { | |
| "epoch": 2.54, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5811, | |
| "step": 226 | |
| }, | |
| { | |
| "epoch": 2.55, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6005, | |
| "step": 227 | |
| }, | |
| { | |
| "epoch": 2.56, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5939, | |
| "step": 228 | |
| }, | |
| { | |
| "epoch": 2.57, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5868, | |
| "step": 229 | |
| }, | |
| { | |
| "epoch": 2.58, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5846, | |
| "step": 230 | |
| }, | |
| { | |
| "epoch": 2.6, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5874, | |
| "step": 231 | |
| }, | |
| { | |
| "epoch": 2.61, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5718, | |
| "step": 232 | |
| }, | |
| { | |
| "epoch": 2.62, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5966, | |
| "step": 233 | |
| }, | |
| { | |
| "epoch": 2.63, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6019, | |
| "step": 234 | |
| }, | |
| { | |
| "epoch": 2.64, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5966, | |
| "step": 235 | |
| }, | |
| { | |
| "epoch": 2.65, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5949, | |
| "step": 236 | |
| }, | |
| { | |
| "epoch": 2.66, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5821, | |
| "step": 237 | |
| }, | |
| { | |
| "epoch": 2.67, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5917, | |
| "step": 238 | |
| }, | |
| { | |
| "epoch": 2.69, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5951, | |
| "step": 239 | |
| }, | |
| { | |
| "epoch": 2.7, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5873, | |
| "step": 240 | |
| }, | |
| { | |
| "epoch": 2.71, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6034, | |
| "step": 241 | |
| }, | |
| { | |
| "epoch": 2.72, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5986, | |
| "step": 242 | |
| }, | |
| { | |
| "epoch": 2.73, | |
| "learning_rate": 5e-06, | |
| "loss": 0.618, | |
| "step": 243 | |
| }, | |
| { | |
| "epoch": 2.74, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5823, | |
| "step": 244 | |
| }, | |
| { | |
| "epoch": 2.75, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5995, | |
| "step": 245 | |
| }, | |
| { | |
| "epoch": 2.76, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5813, | |
| "step": 246 | |
| }, | |
| { | |
| "epoch": 2.78, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5903, | |
| "step": 247 | |
| }, | |
| { | |
| "epoch": 2.79, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6034, | |
| "step": 248 | |
| }, | |
| { | |
| "epoch": 2.8, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5975, | |
| "step": 249 | |
| }, | |
| { | |
| "epoch": 2.81, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5831, | |
| "step": 250 | |
| }, | |
| { | |
| "epoch": 2.82, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6062, | |
| "step": 251 | |
| }, | |
| { | |
| "epoch": 2.83, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6077, | |
| "step": 252 | |
| }, | |
| { | |
| "epoch": 2.84, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6115, | |
| "step": 253 | |
| }, | |
| { | |
| "epoch": 2.85, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5933, | |
| "step": 254 | |
| }, | |
| { | |
| "epoch": 2.87, | |
| "learning_rate": 5e-06, | |
| "loss": 0.602, | |
| "step": 255 | |
| }, | |
| { | |
| "epoch": 2.88, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5888, | |
| "step": 256 | |
| }, | |
| { | |
| "epoch": 2.89, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5887, | |
| "step": 257 | |
| }, | |
| { | |
| "epoch": 2.9, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6002, | |
| "step": 258 | |
| }, | |
| { | |
| "epoch": 2.91, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5965, | |
| "step": 259 | |
| }, | |
| { | |
| "epoch": 2.92, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5944, | |
| "step": 260 | |
| }, | |
| { | |
| "epoch": 2.93, | |
| "learning_rate": 5e-06, | |
| "loss": 0.598, | |
| "step": 261 | |
| }, | |
| { | |
| "epoch": 2.94, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6011, | |
| "step": 262 | |
| }, | |
| { | |
| "epoch": 2.96, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6041, | |
| "step": 263 | |
| }, | |
| { | |
| "epoch": 2.97, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5912, | |
| "step": 264 | |
| }, | |
| { | |
| "epoch": 2.98, | |
| "learning_rate": 5e-06, | |
| "loss": 0.5983, | |
| "step": 265 | |
| }, | |
| { | |
| "epoch": 2.99, | |
| "learning_rate": 5e-06, | |
| "loss": 0.6011, | |
| "step": 266 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "learning_rate": 5e-06, | |
| "loss": 0.589, | |
| "step": 267 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "step": 267, | |
| "total_flos": 341365728083968.0, | |
| "train_loss": 0.7409698463111335, | |
| "train_runtime": 5609.5068, | |
| "train_samples_per_second": 9.122, | |
| "train_steps_per_second": 0.048 | |
| } | |
| ], | |
| "logging_steps": 1.0, | |
| "max_steps": 267, | |
| "num_input_tokens_seen": 0, | |
| "num_train_epochs": 3, | |
| "save_steps": 100, | |
| "total_flos": 341365728083968.0, | |
| "train_batch_size": 16, | |
| "trial_name": null, | |
| "trial_params": null | |
| } | |