swathi6016's picture
Upload 2 files
6b755b4 verified
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import httpx
import os
app = FastAPI(title="Phishing Detection API")
# CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["https://phishing-detector-frontend-eight.vercel.app"], # Allow all origins for now
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Configuration
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MODEL_ID = os.getenv("HF_MODEL_ID", "swathi6016/phishing-detector1")
HF_API_URL = f"https://api-inference.huggingface.co/models/{HF_MODEL_ID}"
# Pydantic model for request validation
class URLRequest(BaseModel):
url: str
@app.get("/")
async def root():
"""Root endpoint"""
return {
"message": "Phishing Detection API",
"status": "running",
"model": "DistilBERT via HuggingFace",
"endpoints": {
"check": "POST /check",
"health": "GET /health",
"docs": "GET /docs"
}
}
@app.get("/health")
async def health():
"""Health check"""
return {
"status": "healthy",
"model": HF_MODEL_ID,
"hf_token_set": bool(HF_TOKEN)
}
@app.post("/check")
async def check_url(request: URLRequest):
"""Check if URL is phishing"""
if not HF_TOKEN:
raise HTTPException(
status_code=500,
detail="HF_TOKEN not configured"
)
url = request.url.strip()
if not url:
raise HTTPException(status_code=400, detail="URL is required")
try:
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
payload = {"inputs": url}
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.post(HF_API_URL, headers=headers, json=payload)
if response.status_code == 503:
raise HTTPException(
status_code=503,
detail="Model is loading. Please try again in 20 seconds."
)
if response.status_code != 200:
raise HTTPException(
status_code=response.status_code,
detail=f"HuggingFace API error: {response.text}"
)
result = response.json()
# Parse response
if isinstance(result, list) and len(result) > 0:
predictions = result[0] if isinstance(result[0], list) else result
phishing_score = 0.0
legitimate_score = 0.0
for pred in predictions:
label = str(pred.get("label", "")).lower()
score = float(pred.get("score", 0.0))
if "1" in label or "phishing" in label:
phishing_score = score
elif "0" in label or "legitimate" in label or "legit" in label:
legitimate_score = score
is_phishing = phishing_score > legitimate_score
confidence = max(phishing_score, legitimate_score)
if phishing_score > 0.8:
risk_level = "HIGH RISK"
elif phishing_score > 0.5:
risk_level = "MEDIUM RISK"
else:
risk_level = "LOW RISK"
return {
"url": url,
"is_phishing": is_phishing,
"phishing_probability": phishing_score,
"legitimate_probability": legitimate_score,
"confidence": confidence,
"prediction": "PHISHING" if is_phishing else "LEGITIMATE",
"risk_level": risk_level
}
else:
raise HTTPException(
status_code=500,
detail="Unexpected response format from model"
)
except httpx.TimeoutException:
raise HTTPException(status_code=504, detail="Request timeout")
except httpx.RequestError as e:
raise HTTPException(status_code=500, detail=f"Connection error: {str(e)}")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 8000))
uvicorn.run(app, host="0.0.0.0", port=port)