|
|
from fastapi import FastAPI, HTTPException
|
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
|
from pydantic import BaseModel
|
|
|
import httpx
|
|
|
import os
|
|
|
|
|
|
app = FastAPI(title="Phishing Detection API")
|
|
|
|
|
|
|
|
|
app.add_middleware(
|
|
|
CORSMiddleware,
|
|
|
allow_origins=["https://phishing-detector-frontend-eight.vercel.app"],
|
|
|
allow_credentials=True,
|
|
|
allow_methods=["*"],
|
|
|
allow_headers=["*"],
|
|
|
)
|
|
|
|
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
HF_MODEL_ID = os.getenv("HF_MODEL_ID", "swathi6016/phishing-detector1")
|
|
|
HF_API_URL = f"https://api-inference.huggingface.co/models/{HF_MODEL_ID}"
|
|
|
|
|
|
|
|
|
class URLRequest(BaseModel):
|
|
|
url: str
|
|
|
|
|
|
@app.get("/")
|
|
|
async def root():
|
|
|
"""Root endpoint"""
|
|
|
return {
|
|
|
"message": "Phishing Detection API",
|
|
|
"status": "running",
|
|
|
"model": "DistilBERT via HuggingFace",
|
|
|
"endpoints": {
|
|
|
"check": "POST /check",
|
|
|
"health": "GET /health",
|
|
|
"docs": "GET /docs"
|
|
|
}
|
|
|
}
|
|
|
|
|
|
@app.get("/health")
|
|
|
async def health():
|
|
|
"""Health check"""
|
|
|
return {
|
|
|
"status": "healthy",
|
|
|
"model": HF_MODEL_ID,
|
|
|
"hf_token_set": bool(HF_TOKEN)
|
|
|
}
|
|
|
|
|
|
@app.post("/check")
|
|
|
async def check_url(request: URLRequest):
|
|
|
"""Check if URL is phishing"""
|
|
|
|
|
|
if not HF_TOKEN:
|
|
|
raise HTTPException(
|
|
|
status_code=500,
|
|
|
detail="HF_TOKEN not configured"
|
|
|
)
|
|
|
|
|
|
url = request.url.strip()
|
|
|
if not url:
|
|
|
raise HTTPException(status_code=400, detail="URL is required")
|
|
|
|
|
|
try:
|
|
|
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
|
|
payload = {"inputs": url}
|
|
|
|
|
|
async with httpx.AsyncClient(timeout=30.0) as client:
|
|
|
response = await client.post(HF_API_URL, headers=headers, json=payload)
|
|
|
|
|
|
if response.status_code == 503:
|
|
|
raise HTTPException(
|
|
|
status_code=503,
|
|
|
detail="Model is loading. Please try again in 20 seconds."
|
|
|
)
|
|
|
|
|
|
if response.status_code != 200:
|
|
|
raise HTTPException(
|
|
|
status_code=response.status_code,
|
|
|
detail=f"HuggingFace API error: {response.text}"
|
|
|
)
|
|
|
|
|
|
result = response.json()
|
|
|
|
|
|
|
|
|
if isinstance(result, list) and len(result) > 0:
|
|
|
predictions = result[0] if isinstance(result[0], list) else result
|
|
|
|
|
|
phishing_score = 0.0
|
|
|
legitimate_score = 0.0
|
|
|
|
|
|
for pred in predictions:
|
|
|
label = str(pred.get("label", "")).lower()
|
|
|
score = float(pred.get("score", 0.0))
|
|
|
|
|
|
if "1" in label or "phishing" in label:
|
|
|
phishing_score = score
|
|
|
elif "0" in label or "legitimate" in label or "legit" in label:
|
|
|
legitimate_score = score
|
|
|
|
|
|
is_phishing = phishing_score > legitimate_score
|
|
|
confidence = max(phishing_score, legitimate_score)
|
|
|
|
|
|
if phishing_score > 0.8:
|
|
|
risk_level = "HIGH RISK"
|
|
|
elif phishing_score > 0.5:
|
|
|
risk_level = "MEDIUM RISK"
|
|
|
else:
|
|
|
risk_level = "LOW RISK"
|
|
|
|
|
|
return {
|
|
|
"url": url,
|
|
|
"is_phishing": is_phishing,
|
|
|
"phishing_probability": phishing_score,
|
|
|
"legitimate_probability": legitimate_score,
|
|
|
"confidence": confidence,
|
|
|
"prediction": "PHISHING" if is_phishing else "LEGITIMATE",
|
|
|
"risk_level": risk_level
|
|
|
}
|
|
|
else:
|
|
|
raise HTTPException(
|
|
|
status_code=500,
|
|
|
detail="Unexpected response format from model"
|
|
|
)
|
|
|
|
|
|
except httpx.TimeoutException:
|
|
|
raise HTTPException(status_code=504, detail="Request timeout")
|
|
|
except httpx.RequestError as e:
|
|
|
raise HTTPException(status_code=500, detail=f"Connection error: {str(e)}")
|
|
|
except HTTPException:
|
|
|
raise
|
|
|
except Exception as e:
|
|
|
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
import uvicorn
|
|
|
port = int(os.environ.get("PORT", 8000))
|
|
|
uvicorn.run(app, host="0.0.0.0", port=port) |