Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,63 +1,168 @@
|
|
| 1 |
---
|
| 2 |
-
library_name: transformers
|
| 3 |
license: apache-2.0
|
| 4 |
-
|
|
|
|
| 5 |
tags:
|
| 6 |
-
-
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
It
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
- lr_scheduler_type: linear
|
| 46 |
-
- num_epochs: 3
|
| 47 |
-
- mixed_precision_training: Native AMP
|
| 48 |
-
|
| 49 |
-
### Training results
|
| 50 |
-
|
| 51 |
-
| Training Loss | Epoch | Step | Validation Loss | Micro F1 | Macro F1 |
|
| 52 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
|
| 53 |
-
| 0.0868 | 1.0 | 1224 | 0.0925 | 0.7615 | 0.2471 |
|
| 54 |
-
| 0.0783 | 2.0 | 2448 | 0.0834 | 0.7764 | 0.4156 |
|
| 55 |
-
| 0.0666 | 3.0 | 3672 | 0.0810 | 0.8010 | 0.5416 |
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
- Pytorch 2.9.1+cu128
|
| 62 |
-
- Datasets 4.4.1
|
| 63 |
-
- Tokenizers 0.22.1
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
tags:
|
| 6 |
+
- text-classification
|
| 7 |
+
- propaganda-detection
|
| 8 |
+
- multi-label
|
| 9 |
+
- modernbert
|
| 10 |
+
datasets:
|
| 11 |
+
- synapti/nci-propaganda-production
|
| 12 |
+
- synapti/nci-synthetic-articles
|
| 13 |
+
metrics:
|
| 14 |
+
- f1
|
| 15 |
+
- precision
|
| 16 |
+
- recall
|
| 17 |
+
pipeline_tag: text-classification
|
| 18 |
+
library_name: transformers
|
| 19 |
+
base_model: answerdotai/ModernBERT-base
|
| 20 |
---
|
| 21 |
|
| 22 |
+
# NCI Technique Classifier v2
|
| 23 |
+
|
| 24 |
+
**Multi-label propaganda technique classifier** trained on the NCI (Neural Counter-Intelligence) Protocol dataset.
|
| 25 |
+
|
| 26 |
+
## Model Description
|
| 27 |
+
|
| 28 |
+
This model detects **18 propaganda techniques** in text using a multi-label classification approach. It is designed to work as Stage 2 in a two-stage pipeline:
|
| 29 |
+
|
| 30 |
+
1. **Stage 1**: Binary detection (is there propaganda?) using `synapti/nci-binary-detector`
|
| 31 |
+
2. **Stage 2**: Technique classification (what techniques are used?) using this model
|
| 32 |
+
|
| 33 |
+
### Supported Techniques
|
| 34 |
+
|
| 35 |
+
| Technique | Description |
|
| 36 |
+
|-----------|-------------|
|
| 37 |
+
| `Loaded_Language` | Words/phrases with strong emotional implications |
|
| 38 |
+
| `Appeal_to_fear-prejudice` | Building support by exploiting fear |
|
| 39 |
+
| `Exaggeration,Minimisation` | Making something more/less important than it is |
|
| 40 |
+
| `Repetition` | Repeating the same message over and over |
|
| 41 |
+
| `Flag-Waving` | Playing on national/group identity |
|
| 42 |
+
| `Name_Calling,Labeling` | Attacking through labels rather than arguments |
|
| 43 |
+
| `Reductio_ad_hitlerum` | Persuading by comparing to disliked groups |
|
| 44 |
+
| `Black-and-White_Fallacy` | Presenting only two choices |
|
| 45 |
+
| `Causal_Oversimplification` | Assuming single cause for complex issue |
|
| 46 |
+
| `Whataboutism,Straw_Men,Red_Herring` | Deflection and misdirection |
|
| 47 |
+
| `Straw_Man` | Misrepresenting someone's argument |
|
| 48 |
+
| `Red_Herring` | Introducing irrelevant topics |
|
| 49 |
+
| `Doubt` | Questioning credibility without evidence |
|
| 50 |
+
| `Appeal_to_Authority` | Relying on authority rather than evidence |
|
| 51 |
+
| `Thought-terminating_Cliches` | Phrases that discourage critical thought |
|
| 52 |
+
| `Bandwagon` | Appeals to popularity |
|
| 53 |
+
| `Slogans` | Brief, memorable phrases |
|
| 54 |
+
| `Obfuscation,Intentional_Vagueness,Confusion` | Deliberately unclear language |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
## Usage
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 60 |
+
import torch
|
| 61 |
+
|
| 62 |
+
# Load model and tokenizer
|
| 63 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 64 |
+
"synapti/nci-technique-classifier-v2",
|
| 65 |
+
trust_remote_code=True
|
| 66 |
+
)
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 68 |
+
"synapti/nci-technique-classifier-v2",
|
| 69 |
+
trust_remote_code=True
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Prepare input
|
| 73 |
+
text = "Wake up, patriots! The radical elites are destroying our country!"
|
| 74 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 75 |
+
|
| 76 |
+
# Get predictions
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
outputs = model(**inputs)
|
| 79 |
+
probs = torch.sigmoid(outputs.logits)[0]
|
| 80 |
+
|
| 81 |
+
# Get technique labels
|
| 82 |
+
id2label = model.config.id2label
|
| 83 |
+
threshold = 0.3
|
| 84 |
+
|
| 85 |
+
# Print detected techniques
|
| 86 |
+
for idx, prob in enumerate(probs):
|
| 87 |
+
if prob.item() >= threshold:
|
| 88 |
+
technique = id2label[str(idx)]
|
| 89 |
+
print(f"{technique}: {prob.item():.1%}")
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### Two-Stage Pipeline Usage
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
from nci.transformers.two_stage_pipeline import TwoStagePipeline
|
| 96 |
+
|
| 97 |
+
# Load two-stage pipeline
|
| 98 |
+
pipeline = TwoStagePipeline.from_pretrained(
|
| 99 |
+
binary_model="synapti/nci-binary-detector",
|
| 100 |
+
technique_model="synapti/nci-technique-classifier-v2",
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Analyze text
|
| 104 |
+
result = pipeline.analyze("Some text to analyze...")
|
| 105 |
+
print(f"Has propaganda: {result.has_propaganda}")
|
| 106 |
+
print(f"Confidence: {result.propaganda_confidence:.1%}")
|
| 107 |
+
print(f"Detected techniques: {result.detected_techniques}")
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
## Training Details
|
| 111 |
+
|
| 112 |
+
### Training Data
|
| 113 |
+
|
| 114 |
+
- **Primary**: [synapti/nci-propaganda-production](https://huggingface.co/datasets/synapti/nci-propaganda-production) (11,573 samples)
|
| 115 |
+
- **Augmentation**: [synapti/nci-synthetic-articles](https://huggingface.co/datasets/synapti/nci-synthetic-articles) (~5,485 synthetic article-length samples)
|
| 116 |
+
- **Total**: ~17,000 training samples
|
| 117 |
+
|
| 118 |
+
### Training Procedure
|
| 119 |
+
|
| 120 |
+
- **Base model**: [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
|
| 121 |
+
- **Fine-tuning**: HuggingFace AutoTrain on A100 GPU
|
| 122 |
+
- **Epochs**: 3
|
| 123 |
+
- **Batch size**: 16
|
| 124 |
+
- **Learning rate**: 2e-5
|
| 125 |
+
- **Loss function**: Focal Loss (gamma=2) for class imbalance handling
|
| 126 |
+
|
| 127 |
+
### Performance Metrics
|
| 128 |
+
|
| 129 |
+
**Test Set Performance:**
|
| 130 |
+
|
| 131 |
+
| Metric | Score |
|
| 132 |
+
|--------|-------|
|
| 133 |
+
| **Micro F1** | 80.1% |
|
| 134 |
+
| **Macro F1** | 51.2% |
|
| 135 |
+
|
| 136 |
+
**Top Performing Techniques:**
|
| 137 |
+
|
| 138 |
+
| Technique | F1 Score |
|
| 139 |
+
|-----------|----------|
|
| 140 |
+
| Loaded_Language | 97.0% |
|
| 141 |
+
| Appeal_to_fear-prejudice | 89.7% |
|
| 142 |
+
| Name_Calling,Labeling | 81.8% |
|
| 143 |
+
| Exaggeration,Minimisation | 75.4% |
|
| 144 |
+
|
| 145 |
+
## Limitations
|
| 146 |
+
|
| 147 |
+
- Trained primarily on English text
|
| 148 |
+
- Performance varies by technique (common techniques perform better)
|
| 149 |
+
- Best used as Stage 2 after binary detection for efficient inference
|
| 150 |
+
- Requires `trust_remote_code=True` for ModernBERT architecture
|
| 151 |
+
|
| 152 |
+
## Citation
|
| 153 |
+
|
| 154 |
+
If you use this model, please cite:
|
| 155 |
|
| 156 |
+
```bibtex
|
| 157 |
+
@misc{nci-technique-classifier-v2,
|
| 158 |
+
title={NCI Technique Classifier v2: Multi-label Propaganda Detection},
|
| 159 |
+
author={Synapti},
|
| 160 |
+
year={2024},
|
| 161 |
+
publisher={Hugging Face},
|
| 162 |
+
url={https://huggingface.co/synapti/nci-technique-classifier-v2}
|
| 163 |
+
}
|
| 164 |
+
```
|
| 165 |
+
|
| 166 |
+
## License
|
| 167 |
|
| 168 |
+
Apache 2.0
|
|
|
|
|
|
|
|
|