File size: 128,315 Bytes
c54851c
ee7fda4
 
c54851c
 
 
 
 
 
ee7fda4
c54851c
ee7fda4
c54851c
 
ee7fda4
 
c54851c
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54851c
ee7fda4
 
 
 
 
 
 
c54851c
ee7fda4
 
 
 
 
 
 
 
c54851c
ee7fda4
 
 
 
 
 
c54851c
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54851c
 
 
 
 
 
ee7fda4
c54851c
 
 
 
 
 
d4f93e5
c54851c
 
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54851c
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
c54851c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7fda4
 
c54851c
ee7fda4
 
 
 
 
 
 
 
 
c54851c
 
ee7fda4
c54851c
d4f93e5
c54851c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54851c
ee7fda4
c54851c
ee7fda4
 
 
c54851c
ee7fda4
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f93e5
ee7fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54851c
 
d4f93e5
c54851c
ee7fda4
c54851c
 
 
 
 
 
 
 
 
ee7fda4
c54851c
 
 
ee7fda4
c54851c
 
 
 
db3c618
c54851c
ee7fda4
c54851c
 
ee7fda4
c54851c
 
 
 
 
 
 
 
db3c618
c54851c
 
 
db3c618
c54851c
 
db3c618
c54851c
 
 
 
 
ee7fda4
c54851c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7fda4
c54851c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7fda4
c54851c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db3c618
 
d4f93e5
 
 
 
 
 
 
c54851c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db3c618
c54851c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7fda4
 
 
 
 
 
 
 
 
 
 
c54851c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:3876398
- loss:CachedMultipleNegativesRankingLoss
- loss:CoSENTLoss
base_model: jhu-clsp/ettin-encoder-17m
widget:
- source_sentence: what important natural resources in west africa did the songhai
    empire control
  sentences:
  - Timur In 1398, Timur invaded northern India, attacking the Delhi Sultanate ruled
    by Sultan Nasir-ud-Din Mahmud Shah Tughluq of the Tughlaq Dynasty. He was opposed
    by Ahirs and faced some reversals from the Jats, but the Sultanate at Delhi did
    nothing to stop him.[59][60] After crossing the Indus river on 30 September 1398,
    he sacked Tulamba and massacred its inhabitants.[61] Then he advanced and captured
    Multan by October.[62]
  - Timur In 1398, Timur invaded northern India, attacking the Delhi Sultanate ruled
    by Sultan Nasir-ud-Din Mahmud Shah Tughluq of the Tughlaq Dynasty. He was opposed
    by Ahirs and faced some reversals from the Jats, but the Sultanate at Delhi did
    nothing to stop him.[59][60] After crossing the Indus river on 30 September 1398,
    he sacked Tulamba and massacred its inhabitants.[61] Then he advanced and captured
    Multan by October.[62]
  - Timur In 1398, Timur invaded northern India, attacking the Delhi Sultanate ruled
    by Sultan Nasir-ud-Din Mahmud Shah Tughluq of the Tughlaq Dynasty. He was opposed
    by Ahirs and faced some reversals from the Jats, but the Sultanate at Delhi did
    nothing to stop him.[59][60] After crossing the Indus river on 30 September 1398,
    he sacked Tulamba and massacred its inhabitants.[61] Then he advanced and captured
    Multan by October.[62]
  - Indus Valley Civilisation Suggested contributory causes for the localisation of
    the IVC include changes in the course of the river,[148] and climate change that
    is also signalled for the neighbouring areas of the Middle East.[149][150] As
    of 2016[update] many scholars believe that drought and a decline in trade with
    Egypt and Mesopotamia caused the collapse of the Indus Civilisation.[151]
  - History of West Africa In 1591, Morocco invaded the Songhai Empire under Ahmad
    al-Mansur of the Saadi Dynasty to secure the goldfields of the Sahel. At the Battle
    of Tondibi, the Songhai army was defeated. The Moroccans captured Djenne, Gao,
    and Timbuktu, but they were unable to secure the whole region. Askiya Nuhu and
    the Songhay army regrouped at Dendi in the heart of Songhai territory where a
    spirited guerrilla resistance sapped the resources of the Moroccans, who were
    dependent upon constant resupply from Morocco. Songhai split into several states
    during the 17th century.
  - Ancient Egypt The pharaoh was the absolute monarch of the country and, at least
    in theory, wielded complete control of the land and its resources. The king was
    the supreme military commander and head of the government, who relied on a bureaucracy
    of officials to manage his affairs. In charge of the administration was his second
    in command, the vizier, who acted as the king's representative and coordinated
    land surveys, the treasury, building projects, the legal system, and the archives.[88]
    At a regional level, the country was divided into as many as 42 administrative
    regions called nomes each governed by a nomarch, who was accountable to the vizier
    for his jurisdiction. The temples formed the backbone of the economy. Not only
    were they houses of worship, but were also responsible for collecting and storing
    the nation's wealth in a system of granaries and treasuries administered by overseers,
    who redistributed grain and goods.[89]
- source_sentence: A group of friends and I went to a corn maize. It was a dark night
    and the corn maize was said to be haunted. A scary man jumped out and scared us.
    We ended up lost in the maize for two hours. We made it out and were glad we experienced
    the maze together.
  sentences:
  - 'hypothesis: The median income for a household in the city was $26,969, and the
    median income for a family was $31,997.'
  - 'hypothesis: There is one  objects is Daniel carrying.'
  - 'hypothesis: We calmed down in order to solve the maize ends after we made it
    out'
- source_sentence: J. David Spurlock was born on November 18 , 1959 in Dallas , Texas
    . He moved to Memphis , Tennessee in 1973 .
  sentences:
  - David Spurlock was born on 18 November 1959 in Dallas , Texas , and moved to Memphis
    , Tennessee in 1973 .
  - This is a list of the etymology of street names in the district Covent Garden
    in London .
  - During the five days of the journey , he brought some books about Elba which he
    studied from Fontainebleau .
- source_sentence: The musical films '' Mark Twain `` and '' Huckleberry Finn `` ,
    both based on Tom Sawyer 's novels , were partially shot on site .
  sentences:
  - The musical films `` Mark Twain '' and `` Huckleberry Finn '' , both based on
    Tom Sawyer 's novels , were shot partially on location here .
  - His father called him Ali and his nickname was Murtaza .
  - A KWL chart can be used for all subjects in a whole group or a small group atmosphere
    .
- source_sentence: what blood type can donate blood to all other blood types.
  sentences:
  - A number of Blood donors also donate platelets by apheresis (a procedure in which
    Blood is drawn from a Blood donor and separated into its components, some of which
    are retained, such as plasma or platelets, and the remainder of the Blood is returned,
    by transfusion, to the Blood donor; also called hemapheresis).
  - "Uluru is easily the most iconic natural landform in Australia, and its formation\
    \ was equally special.The creation of Uluru and Kata Tjuta â\x80\x94 as both were\
    \ formed at the same time â\x80\x94 began over 500 million years ago. At this\
    \ time the big crustal blocks that form the Australian continent coming together.luru\
    \ is easily the most iconic natural landform in Australia, and its formation was\
    \ equally special."
  - "AB can only donate blood to other ABs. A can donate blood to As and ABs. B can\
    \ donate blood to Bs and ABs. O can donate to all blood types. Negative Rh factors\
    \ can donate toâ\x80¦ both positive and negative Rh factors, however postive Rh\
    \ factors can only donate to other positive. So if I had O+ blood, I couldn't\
    \ donate to A-, but could donate to A+."
datasets:
- tasksource/merged-2l-nli
- tasksource/merged-3l-nli
- tasksource/zero-shot-label-nli
- MoritzLaurer/dataset_train_nli
- google-research-datasets/paws
- nyu-mll/glue
- mwong/fever-evidence-related
- tasksource/sts-companion
- tomaarsen/natural-questions-hard-negatives
- tomaarsen/gooaq-hard-negatives
- bclavie/msmarco-500k-triplets
- sentence-transformers/all-nli
- sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
- sentence-transformers/gooaq
- sentence-transformers/natural-questions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on jhu-clsp/ettin-encoder-17m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) on 18 datasets. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) <!-- at revision 987607455c61e7a5bbc85f7758e0512ea6d0ae4c -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 256 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [merged-2l-nli](https://huggingface.co/datasets/tasksource/merged-2l-nli)
    - [merged-3l-nli](https://huggingface.co/datasets/tasksource/merged-3l-nli)
    - [zero-shot-label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli)
    - [dataset_train_nli](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli)
    - [paws/labeled_final](https://huggingface.co/datasets/paws)
    - [glue/mrpc](https://huggingface.co/datasets/glue)
    - [glue/qqp](https://huggingface.co/datasets/glue)
    - [fever-evidence-related](https://huggingface.co/datasets/mwong/fever-evidence-related)
    - [glue/stsb](https://huggingface.co/datasets/glue)
    - sick/relatedness
    - [sts-companion](https://huggingface.co/datasets/tasksource/sts-companion)
    - [tomaarsen/natural-questions-hard-negatives](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives)
    - [tomaarsen/gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives)
    - [bclavie/msmarco-500k-triplets](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets)
    - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
    - [sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1)
    - [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
    - [sentence-transformers/natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tasksource/ettin-17m-embed")
# Run inference
queries = [
    "what blood type can donate blood to all other blood types.",
]
documents = [
    "AB can only donate blood to other ABs. A can donate blood to As and ABs. B can donate blood to Bs and ABs. O can donate to all blood types. Negative Rh factors can donate toâ\x80¦ both positive and negative Rh factors, however postive Rh factors can only donate to other positive. So if I had O+ blood, I couldn't donate to A-, but could donate to A+.",
    'A number of Blood donors also donate platelets by apheresis (a procedure in which Blood is drawn from a Blood donor and separated into its components, some of which are retained, such as plasma or platelets, and the remainder of the Blood is returned, by transfusion, to the Blood donor; also called hemapheresis).',
    'Uluru is easily the most iconic natural landform in Australia, and its formation was equally special.The creation of Uluru and Kata Tjuta â\x80\x94 as both were formed at the same time â\x80\x94 began over 500 million years ago. At this time the big crustal blocks that form the Australian continent coming together.luru is easily the most iconic natural landform in Australia, and its formation was equally special.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 256] [3, 256]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.6392,  0.7162, -0.1267]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets
<details><summary>merged-2l-nli</summary>

#### merged-2l-nli

* Dataset: [merged-2l-nli](https://huggingface.co/datasets/tasksource/merged-2l-nli) at [af845c6](https://huggingface.co/datasets/tasksource/merged-2l-nli/tree/af845c6b78a8ac3ea294666c2e5132cf6d5f4af0)
* Size: 221,613 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 66.07 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 15.66 tokens</li><li>max: 122 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                              | sentence2                                                           |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
  | <code>No Weapons of Mass Destruction Found in Iraq Yet.</code>                                                                                                                                                         | <code>hypothesis: Weapons of Mass Destruction Found in Iraq.</code> |
  | <code>Mary is no longer in the bedroom. Daniel moved to the hallway.</code>                                                                                                                                            | <code>hypothesis: Mary is in the bedroom.</code>                    |
  | <code>The box of chocolates fits inside the chest. The box is bigger than the chest. The box is bigger than the suitcase. The suitcase fits inside the box. The container is bigger than the box of chocolates.</code> | <code>hypothesis: The  box fit in the box of chocolates.</code>     |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 48,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>merged-3l-nli</summary>

#### merged-3l-nli

* Dataset: [merged-3l-nli](https://huggingface.co/datasets/tasksource/merged-3l-nli) at [e311b1f](https://huggingface.co/datasets/tasksource/merged-3l-nli/tree/e311b1f45a8f8cc8d4b2c5b92dbc797a05bc069d)
* Size: 179,807 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 66.24 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 34.01 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sentence2                                                                                       |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | <code>A woman is slicing an onion</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>hypothesis: An onion is being sliced by a woman</code>                                    |
  | <code>John met Mary in the museum.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <code>hypothesis: John was in the museum.</code>                                                |
  | <code>zion working_agreement safebreaker annulet willard seed_pearl fall_apart exaeretodon harshly shoddiness dehydrate bootes carlsbad_caverns fireman whitey phobophobia cornish wisp achromatous organization_of_petroleum-exporting_countries declaw coordinate_axis molded_salad apeldoorn gas_fitting main-topsail inert loosely_knit passivity inhalation_anesthesia draconian arteriosclerotic acquiescence paige subpopulation tewkesbury mekong lastingness trademarked fall_apart dreyfus columniation amphibole_group cryonic nubian_desert fall_apart sclera shirred_egg parented dehiscent fall_apart aflatoxin creosol disenfranchise annonaceae fringed_pink turn state moat agammaglobulinemia endodontics still_life pilaster clotting_time anthrax agamemnon watered_stock vela hao payback valuation humiliation bread homeopath friendliness exercise_device cryptic teletypewriter daycare air_bubble sachem fall_apart synchronous_converter unforethoughtful swad labial_stop housemate antiaircraft napier redeploy p...</code> | <code>hypothesis: The sequence contains exactly 5 instances of the element 'fall_apart'.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 48,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>zero-shot-label-nli</summary>

#### zero-shot-label-nli

* Dataset: [zero-shot-label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli) at [b363c89](https://huggingface.co/datasets/tasksource/zero-shot-label-nli/tree/b363c895cd4b15b814b9dbd7e4466cd301c96b2a)
* Size: 499,439 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 63.96 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 12.15 tokens</li><li>max: 20 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sentence2                                            |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|
  | <code>Tonight you barely say a word, but in your eyes I see everything. A whole conversation is being kept locked away. Just let me know, Darling, when did you plan to tell me falling in love wasn't for us? Your heart doesn't belong to me and you'll never hold my hand quite the same way. Keep the charade of a picture perfect romance up, because the bitter conclusion is coming my way. You'll regret not having a sequel in this romance. I'll show you that I'm the girl you let get away, the one you should have held on to. Breathing is the only thing keeping me alive, but I'll do it just to kill you inside.</code> | <code>hypothesis: This example is Leo.</code>        |
  | <code>Amrozi said Jews and the US and its allies had evil plans to colonise countries like Indonesia .<br>Jews , Americans and their allies had " evil " plans to colonise nations like Indonesia , Amrozi said .</code>                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>hypothesis: This example is equivalent.</code> |
  | <code>A baby is playing outdoors on a sunny day sitting in a colorful kids chair playing with toys , biting the top of a blue toy , with a back drop of green grass and neighborhood fence .<br>It is likely that a kid is enjoying all his new toys</code>                                                                                                                                                                                                                                                                                                                                                                              | <code>hypothesis: This example is invalid.</code>    |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 48,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>dataset_train_nli</summary>

#### dataset_train_nli

* Dataset: [dataset_train_nli](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli) at [1e00964](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli/tree/1e009645b2943106614107b06107b1ee85ac1161)
* Size: 60,083 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 93.99 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 17.99 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                   | sentence2                                                                                                                                |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how long will my cash withdrawal be pending for?</code>                                                                                                                                                                                                                                                                                                                               | <code>hypothesis: This banking customer example message is about a pending cash withdrawal.</code>                                       |
  | <code>We believe police must be properly resourced to achieve their stated objectives and meet our diverse communities’ expectations. Labour recognises that properly resourcing community policing is a major factor to successfully implementing a ‘prevention first’ operational strategy and is vital if the Police is to retain the trust and confidence of the general public.</code> | <code>hypothesis: This example text from a political party manifesto is positive towards law and order and strict law enforcement</code> |
  | <code>Schwab to pay deposed CEO \$10 million in cash plus stock SAN FRANCISCO Slumping stock brokerage Charles Schwab has promised to pay ten (m) million dollars in cash to recently ousted chief executive David Pottruck.</code>                                                                                                                                                         | <code>hypothesis: This example news text is about business news</code>                                                                   |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 48,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>paws/labeled_final</summary>

#### paws/labeled_final

* Dataset: [paws/labeled_final](https://huggingface.co/datasets/paws) at [161ece9](https://huggingface.co/datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 21,829 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                        |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.72 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 27.7 tokens</li><li>max: 56 tokens</li></ul> |
* Samples:
  | sentence1                                                                                              | sentence2                                                                                                  |
  |:-------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|
  | <code>The NBA season of 1975 -- 76 was the 30th season of the National Basketball Association .</code> | <code>The 1975 -- 76 season of the National Basketball Association was the 30th season of the NBA .</code> |
  | <code>When comparable rates of flow can be maintained , the results are high .</code>                  | <code>The results are high when comparable flow rates can be maintained .</code>                           |
  | <code>It is the seat of Zerendi District in Akmola Region .</code>                                     | <code>It is the seat of the district of Zerendi in Akmola region .</code>                                  |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 48,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>glue/mrpc</summary>

#### glue/mrpc

* Dataset: [glue/mrpc](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 2,474 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 27.89 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 27.81 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                              | sentence2                                                                                                                        |
  |:-----------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
  | <code>Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .</code>   | <code>Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .</code>     |
  | <code>They had published an advertisement on the Internet on June 10 , offering the cargo for sale , he added .</code> | <code>On June 10 , the ship 's owners had published an advertisement on the Internet , offering the explosives for sale .</code> |
  | <code>The stock rose $ 2.11 , or about 11 percent , to close Friday at $ 21.51 on the New York Stock Exchange .</code> | <code>PG & E Corp. shares jumped $ 1.63 or 8 percent to $ 21.03 on the New York Stock Exchange on Friday .</code>                |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 48,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>glue/qqp</summary>

#### glue/qqp

* Dataset: [glue/qqp](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 61,498 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 13.63 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.74 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
  | sentence1                                                    | sentence2                                              |
  |:-------------------------------------------------------------|:-------------------------------------------------------|
  | <code>"Is it possible to never get ""over"" someone?"</code> | <code>Is it possible to never get over someone?</code> |
  | <code>Does my college major matter?</code>                   | <code>Does college degrees really matter?</code>       |
  | <code>What is the importance of money in ones life?</code>   | <code>Why money is important in our life?</code>       |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 48,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>fever-evidence-related</summary>

#### fever-evidence-related

* Dataset: [fever-evidence-related](https://huggingface.co/datasets/mwong/fever-evidence-related) at [14aba00](https://huggingface.co/datasets/mwong/fever-evidence-related/tree/14aba009b5fcd97b1a9ee6f3e3b0da0e308cf7cb)
* Size: 117,818 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 6 tokens</li><li>mean: 13.69 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 35 tokens</li><li>mean: 187.03 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                  | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The Amazing Spider-Man 2 is a movie.</code>                          | <code>Lieutenant Aung San Thuriya Thuya Thai Con -LRB- aka -RRB- Lieutenant Thai Con -LRB- serial no  : -LRB- Kyee -RRB- 7288 -RRB- was the only Chin soldier to have received both Thuya and Aung San Thuriya Medal , the highest and most prestigious award for gallantry and bravery in the face of the enemy that can be awarded to members of Myanmar Armed Forces .. Lieutenant. Lieutenant. Chin. Chin. Aung San Thuriya. Aung San Thuriya. Thuya. Thuya. He won the award at the Raid on U Seikkein Monastery at Battle of Insein near during the fight against of Karen insurgency in Myanmar .. Battle of Insein. Battle of Insein. Karen. Karen people. The raid on U Seikkein Monastery can be regarded as one of the most prominent part of Battle of Insein .. Battle of Insein. Battle of Insein. The structural pattern of U Sakkein monastery was something like a systematically built fortress .. It was built on a hillock surrounded by other monasteries .. The Karen insurgents were using these monasteries on the hil...</code> |
  | <code>Muhammad was Catholic.</code>                                        | <code>Lamp Unto My Feet was an American ecumenical religious program that was produced by CBS Television and broadcast from 1948 to 1979 on Sunday mornings .. CBS Television. CBS Television. ecumenical. ecumenical</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  | <code>Bradley Whitford is an actor that stars in the movie Get Out.</code> | <code>Adem Karapici was an Albanian football player and coach who played for Sportklub Tirane in the 1930s where he won six National Championships .. Sportklub Tirane. KF Tirana. football. football ( soccer ). National Championships. Albanian Superliga. As a coach , he was in charge of Albania national team for five games between 1947 and 1948 .. Albania. Albania. Albania national team. Albania national football team</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 48,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>glue/stsb</summary>

#### glue/stsb

* Dataset: [glue/stsb](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 10.16 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.12 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.23</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                             | label                          |
  |:-----------------------------------------------------------|:----------------------------------------------------------------------|:-------------------------------|
  | <code>A plane is taking off.</code>                        | <code>An air plane is taking off.</code>                              | <code>5.0</code>               |
  | <code>A man is playing a large flute.</code>               | <code>A man is playing a flute.</code>                                | <code>3.799999952316284</code> |
  | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>3.799999952316284</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```
</details>
<details><summary>sick/relatedness</summary>

#### sick/relatedness

* Dataset: sick/relatedness
* Size: 4,439 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 12.66 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.46 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 3.41</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                                               | sentence2                                                                                      | label                          |
  |:--------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-------------------------------|
  | <code>A group of kids is playing in a yard and an old man is standing in the background</code>          | <code>A group of boys in a yard is playing and a man is standing in the background</code>      | <code>4.5</code>               |
  | <code>A group of children is playing in the house and there is no man standing in the background</code> | <code>A group of kids is playing in a yard and an old man is standing in the background</code> | <code>3.200000047683716</code> |
  | <code>The young boys are playing outdoors and the man is smiling nearby</code>                          | <code>The kids are playing outdoors near a man with a smile</code>                             | <code>4.699999809265137</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```
</details>
<details><summary>sts-companion</summary>

#### sts-companion

* Dataset: [sts-companion](https://huggingface.co/datasets/tasksource/sts-companion) at [fd8beff](https://huggingface.co/datasets/tasksource/sts-companion/tree/fd8beffb788df5f6673bc688e6dcbe3690a3acc6)
* Size: 4,760 training samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | label                                                          | sentence1                                                                         | sentence2                                                                         |
  |:--------|:---------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | float                                                          | string                                                                            | string                                                                            |
  | details | <ul><li>min: 0.0</li><li>mean: 3.09</li><li>max: 5.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.91 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.28 tokens</li><li>max: 83 tokens</li></ul> |
* Samples:
  | label            | sentence1                                                                                                                                                                                                                                                                                                                                                  | sentence2                                                                                                |
  |:-----------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
  | <code>1.6</code> | <code>this lus in this frame refer to biological entities labeled by the fe organism. an organism is described as something that can be alive, or have naturally occuring biological processes and functions, however the concept of life is often used metaphorically for non-organic entities which resemble or act as if they have organic life.</code> | <code>living things collectively;</code>                                                                 |
  | <code>3.8</code> | <code>Washington's Economic Boom, Financed by You  Real life "Hunger Games"</code>                                                                                                                                                                                                                                                                         | <code>Washington?s Economic Boom, Financed by You</code>                                                 |
  | <code>4.4</code> | <code>Knowledge of foreign languages is accepted as a necessary precursor to mobility.</code>                                                                                                                                                                                                                                                              | <code>It is accepted that knowledge of foreign languages is a necessary precondition to mobility.</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```
</details>
<details><summary>tomaarsen/natural-questions-hard-negatives</summary>

#### tomaarsen/natural-questions-hard-negatives

* Dataset: [tomaarsen/natural-questions-hard-negatives](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives) at [52dfa09](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives/tree/52dfa09a3d5d3f90e7e115c407ccebe30fe79764)
* Size: 96,658 training samples
* Columns: <code>query</code>, <code>answer</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, and <code>negative_5</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                               | negative_1                                                                           | negative_2                                                                           | negative_3                                                                           | negative_4                                                                           | negative_5                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               | string                                                                               | string                                                                               | string                                                                               | string                                                                               | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 12.52 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 137.81 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 143.36 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 142.38 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 145.93 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 145.76 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 141.95 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | query                                                           | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | negative_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | negative_2                                                                                                                                                                                                                                                                                                    | negative_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | negative_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | negative_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tig...</code> | <code>Brisbane Bears However, the club was still struggling off-field. One of the Bears' biggest problems was its lack of support (both on and off the field) in Melbourne, the location of most of its away matches. In mid-1996, the struggling Fitzroy Football Club collapsed due to financial pressures and was seeking to merge its assets with another club. When a merger with North Melbourne in forming the North Fitzroy Kangaroos failed to win the support of the other AFL clubs, a deal for a merger was done between Fitzroy and the Bears. The new team was known as the Brisbane Lions, based at the Gabba, with Northey as the coach of the merged club. As such, the history of the Brisbane Bears as an individual entity ended after the 1996 season, with ten seasons of competition and the third-place finish in 1996 as its best performance. The Bears last match as a separate entity was a preliminary final on Saturday 21 September 1996 at the Melbourne Cricket Ground (where the Bears played their first VF...</code> | <code>Virginia Tech–West Virginia football rivalry Virginia Tech held the trophy in six of the nine years in which it was contested, but West Virginia leads the all-time series 28–23–1. The last game was played on September 3, 2017 at FedEx Field in Landover, MD; Virginia Tech won 31–24.</code>       | <code>Martin Truex Jr. To start off the Round of 12, Truex scored his 6th win of the season at Charlotte after leading 91 out of 334 laps to secure a spot for the Round of 8. Just two weeks later, he scored another win at Kansas despite having a restart violation early in the race.</code>                                                                                                                                                                                                                                                                                                                                                                                | <code>Adelaide Football Club Star midfielder for many years Patrick Dangerfield left the club at the end of the 2015 season (a season in which he won the club's best and fairest) and Don Pyke, a former premiership player and assistant coach with West Coast who had also been an assistant coach at Adelaide from 2005 to 2006, was appointed Adelaide's senior coach for at least three years.[9] Adelaide was widely tipped to slide out of the finals in 2016[27][28][29] but the Crows proved to be one of the successes of the season, comfortably qualifying for a home elimination final and defeating North Melbourne by 62 points, before being eliminated the next week by eventual beaten grand finalists, Sydney in the semi-finals. The club had a dominant 2017 season, winning their opening six games and never falling below second place for the entire season. Adelaide claimed their second McClelland Trophy as minor premiers.[30] The Adelaide Crows entered the 2017 finals series as favourites for the premiers...</code> | <code>Battle of Appomattox Court House The Battle of Appomattox Court House (Virginia, U.S.), fought on the morning of April 9, 1865, was one of the last battles of the American Civil War (1861–1865). It was the final engagement of Confederate States Army General-in-Chief, Robert E. Lee, and his Army of Northern Virginia before it surrendered to the Union Army of the Potomac under the Commanding General of the United States, Ulysses S. Grant. Lee, having abandoned the Confederate capital of Richmond, Virginia, after the nine and one-half month Siege of Petersburg and Richmond, retreated west, hoping to join his army with the remaining Confederate forces in North Carolina, the Army of Tennessee under Gen. Joseph E. Johnston. Union infantry and cavalry forces under Gen. Philip Sheridan pursued and cut off the Confederates' retreat at the central Virginia village of Appomattox Court House. Lee launched a last-ditch attack to break through the Union forces to his front, assuming the Union forc...</code> |
  | <code>who sang what in the world's come over you</code>         | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code>                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>Lover, You Should've Come Over "Lover, You Should've Come Over" is the seventh track on Jeff Buckley's album Grace. Inspired by the ending of the relationship between Buckley and Rebecca Moore,[1] it concerns the despondency of a young man growing older, finding that his actions represent a perspective he feels that he should have outgrown. Biographer and critic David Browne describes the lyrics as "confused and confusing" and the music as "a languid beauty."[1]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>It's Christmas (All Over The World) "It's Christmas (All Over The World)" is a song recorded by Scottish singer Sheena Easton. It was released in November 1985 as the theme song from the soundtrack of Santa Claus: The Movie. The song was written by Bill House and John Hobbs.</code>              | <code>The End of the World (Skeeter Davis song) "The End of the World" is a country pop song written by Arthur Kent and Sylvia Dee, for American singer Skeeter Davis. It had success in the 1960s and spawned many covers.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>Israel Kamakawiwoʻole His voice became famous outside Hawaii when his album Facing Future was released in 1993. His medley of "Somewhere Over the Rainbow/What a Wonderful World" was released on his albums Ka ʻAnoʻi and Facing Future. It was subsequently featured in several films, television programs, and television commercials.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>Make the World Go Away "Make the World Go Away'" is a country-popular music song composed by Hank Cochran. It has become a Top 40 popular success three times: for Timi Yuro (during 1963), for Eddy Arnold (1965), and for the brother-sister duo Donny and Marie Osmond (1975). The original version of the song was recorded by Ray Price during 1963. It has remained a country crooner standard ever since.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  | <code>who produces the most wool in the world</code>            | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code>                                                                                                                                                                                                                                                                                                                                                                                                           | <code>Baa, Baa, Black Sheep As with many nursery rhymes, attempts have been made to find origins and meanings for the rhyme, most which have no corroborating evidence.[1] Katherine Elwes Thomas in The Real Personages of Mother Goose (1930) suggested that the rhyme referred to resentment at the heavy taxation on wool.[5] This has particularly been taken to refer to the medieval English "Great" or "Old Custom" wool tax of 1275, which survived until the fifteenth century.[1] More recently the rhyme has been connected to the slave trade, particularly in the southern United States.[6] This explanation was advanced during debates over political correctness and the use and reform of nursery rhymes in the 1980s, but has no supporting historical evidence.[7] Rather than being negative, the wool of black sheep may have been prized as it could be made into dark cloth without dyeing.[6]</code>                                                                                                                           | <code>Raymond Group Raymond Group is an Indian branded fabric and fashion retailer, incorporated in 1925. It produces suiting fabric, with a capacity of producing 31 million meters of wool and wool-blended fabrics. Gautam Singhania is the chairman and managing director of the Raymond group.[3]</code> | <code>Silk in the Indian subcontinent Silk in the Indian subcontinent is a luxury good. In India, about 97% of the raw mulberry silk is produced in the five Indian states of Karnataka, Andhra Pradesh, Tamil Nadu, West Bengal and Jammu and Kashmir.[1] Mysore and North Bangalore, the upcoming site of a US$20 million "Silk City", contribute to a majority of silk production.[2] Another emerging silk producer is Tamil Nadu where mulberry cultivation is concentrated in Salem, Erode and Dharmapuri districts. Hyderabad, Andhra Pradesh and Gobichettipalayam, Tamil Nadu were the first locations to have automated silk reeling units.[3] yoyo quantity:::</code> | <code>F. W. Woolworth Company The two Woolworth brothers pioneered and developed merchandising, direct purchasing, sales, and customer service practices commonly used today. Despite its growing to be one of the largest retail chains in the world through most of the 20th century, increased competition led to its decline beginning in the 1980s, while its sporting goods division grew. The chain went out of business in July 1997, when the company decided to focus primarily on sporting goods and renamed itself Venator Group. By 2001, the company focused exclusively on the sporting goods market, changing its name to the present Foot Locker, Inc., changing its ticker symbol from its familiar Z in 2003 to its present ticker (NYSE: FL).</code>                                                                                                                                                                                                                                                                                | <code>Silk Silk's absorbency makes it comfortable to wear in warm weather and while active. Its low conductivity keeps warm air close to the skin during cold weather. It is often used for clothing such as shirts, ties, blouses, formal dresses, high fashion clothes, lining, lingerie, pajamas, robes, dress suits, sun dresses and Eastern folk costumes. For practical use, silk is excellent as clothing that protects from many biting insects that would ordinarily pierce clothing, such as mosquitoes and horseflies.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 32,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>tomaarsen/gooaq-hard-negatives</summary>

#### tomaarsen/gooaq-hard-negatives

* Dataset: [tomaarsen/gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2)
* Size: 500,000 training samples
* Columns: <code>question</code>, <code>answer</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, and <code>negative_5</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              | negative_1                                                                          | negative_2                                                                          | negative_3                                                                          | negative_4                                                                          | negative_5                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                              | string                                                                              | string                                                                              | string                                                                              | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.99 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 57.82 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.42 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 56.84 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.08 tokens</li><li>max: 155 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 57.54 tokens</li><li>max: 129 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 58.23 tokens</li><li>max: 195 tokens</li></ul> |
* Samples:
  | question                                           | answer                                                                                                                                                                                                                                                                                                                                          | negative_1                                                                                                                                                                                                                                                        | negative_2                                                                                                                                                                                                                                 | negative_3                                                                                                                                                                                                    | negative_4                                                                                                                                                                                                                                                                                                   | negative_5                                                                                                                                                                                                                                                                                                                                 |
  |:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>is toprol xl the same as metoprolol?</code>  | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code>                                                                                                    | <code>Secondly, metoprolol and metoprolol ER have different brand-name equivalents: Brand version of metoprolol: Lopressor. Brand version of metoprolol ER: Toprol XL.</code>                                                                                     | <code>Pill with imprint 1 is White, Round and has been identified as Metoprolol Tartrate 25 mg.</code>                                                                                                                                     | <code>Interactions between your drugs No interactions were found between Allergy Relief and metoprolol. This does not necessarily mean no interactions exist. Always consult your healthcare provider.</code> | <code>Metoprolol is a type of medication called a beta blocker. It works by relaxing blood vessels and slowing heart rate, which improves blood flow and lowers blood pressure. Metoprolol can also improve the likelihood of survival after a heart attack.</code>                                          | <code>Metoprolol starts to work after about 2 hours, but it can take up to 1 week to fully take effect. You may not feel any different when you take metoprolol, but this doesn't mean it's not working. It's important to keep taking your medicine.</code>                                                                               |
  | <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> | <code>I Saw the Light. Showcasing the unique talent and musical influence of country-western artist Hank Williams, this candid biography also sheds light on the legacy of drug abuse and tormented relationships that contributes to the singer's legend.</code> | <code>(Read our ranking of his top 10.) And while Howard dresses the part of director, any notion of him as a tortured auteur or dictatorial taskmasker — the clichés of the Hollywood director — are tossed aside. He's very nice.</code> | <code>He was a music star too. Where're you people born and brought up? We 're born and brought up here in Anambra State at Nkpor town, near Onitsha.</code>                                                  | <code>At the age of 87 he has now retired from his live shows and all the traveling involved. And although he still picks up his Martin Guitar and does a show now and then, his life is now devoted to writing his memoirs.</code>                                                                          | <code>The owner of the mysterious voice behind all these videos is a man who's seen a lot, visiting a total of 56 intimate celebrity spaces over the course of five years. His name is Joe Sabia — that's him in the photo — and he's currently the VP of creative development at Condé Nast Entertainment.</code>                         |
  | <code>how are babushka dolls made?</code>          | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code>                                           | <code>A quick scan of the auction and buy-it-now listings on eBay finds porcelain doll values ranging from around $5 and $10 to several thousand dollars or more but no dolls listed above $10,000.</code>                                                        | <code>Japanese dolls are called as ningyō in Japanese and literally translates to 'human form'.</code>                                                                                                                                     | <code>Matyoo: All Fresno Girl dolls come just as real children are born.</code>                                                                                                                               | <code>As of September 2016, there are over 100 characters. The main toy line includes 13-inch Dolls, the mini-series, and a variety of mini play-sets and plush dolls as well as Lalaloopsy Littles, smaller siblings of the 13-inch dolls. A spin-off known as "Lala-Oopsies" came out in late 2012.</code> | <code>LOL dolls are little baby dolls that come wrapped inside a surprise toy ball. Each ball has layers that contain stickers, secret messages, mix and match accessories–and finally–a doll. ... The doll on the ball is almost never the doll inside. Dolls are released in series, so not every doll is available all the time.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 32,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>bclavie/msmarco-500k-triplets</summary>

#### bclavie/msmarco-500k-triplets

* Dataset: [bclavie/msmarco-500k-triplets](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets) at [cb1a85c](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets/tree/cb1a85c1261fa7c65f4ea43f94e50f8b467c372f)
* Size: 500,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.31 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 82.19 tokens</li><li>max: 216 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 78.99 tokens</li><li>max: 209 tokens</li></ul> |
* Samples:
  | query                                                                              | positive                                                                                                                                                                                                                                                                                                                 | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>the most important factor that influences k+ secretion is __________.</code> | <code>The regulation of K+ distribution between the intracellular and extracellular space is referred to as internal K+ balance. The most important factors regulating this movement under normal conditions are insulin and catecholamines (1).</code>                                                                  | <code>They are both also important for secretion and flow of bile: 1  Cholecystokinin: The name of this hormone describes its effect on the biliary system-cholecysto = gallbladder and kinin = movement. 2  Secretin: This hormone is secreted in response to acid in the duodenum.</code>                                                                                                                                                                                                               |
  | <code>how much did the mackinac bridge cost to build</code>                        | <code>The cost to design the project was $3,500,000 (Steinman Company). The cost to construct the bridge was $70, 268,500. Two primary contractors were hired to build the bridge: American Bridge for superstructure - $44,532,900; and Merritt-Chapman and Scott of New York for the foundations - $25,735,600.</code> | <code>When your child needs a dental tooth bridge, you need to know the average cost so you can factor the price into your budget. Several factors affect the price of a bridge, which can run between $700 to $1,500 per tooth. If you have insurance or your child is covered by Medicaid, part of the cost may be covered.</code>                                                                                                                                                                      |
  | <code>when do concussion symptoms appear</code>                                    | <code>Then you can get advice on what to do next. For milder symptoms, the doctor may recommend rest and ask you to watch your child closely for changes, such as a headache that gets worse. Symptoms of a concussion don't always show up right away, and can develop within 24 to 72 hours after an injury.</code>    | <code>Concussion: A traumatic injury to soft tissue, usually the brain, as a result of a violent blow, shaking, or spinning. A brain concussion can cause immediate but temporary impairment of brain functions, such as thinking, vision, equilibrium, and consciousness. After a person has had a concussion, he or she is at increased risk for recurrence. Moreover, after a person has several concussions, less of a blow can cause injury, and the person can require more time to recover.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 32,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>sentence-transformers/all-nli</summary>

#### sentence-transformers/all-nli

* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 500,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.91 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.49 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
  | anchor                                                                     | positive                                         | negative                                                   |
  |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>A person is outdoors, on a horse.</code>   | <code>A person is at a diner, ordering an omelette.</code> |
  | <code>Children smiling and waving at camera</code>                         | <code>There are children present</code>          | <code>The kids are frowning</code>                         |
  | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code>             |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 32,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1</summary>

#### sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1

* Dataset: [sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 500,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: 5 tokens</li><li>mean: 9.87 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 44 tokens</li><li>mean: 85.25 tokens</li><li>max: 211 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 81.18 tokens</li><li>max: 227 tokens</li></ul> |
* Samples:
  | query                                   | positive                                                                                                                                                                                                                                          | negative                                                                                                                                                                                                                                                                                                                                            |
  |:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Rather than preparing students for a specific career, liberal arts programs focus on cultural literacy and hone communication and analytical skills. They often cover various disciplines, ranging from the humanities to social sciences. 1  Program Levels in Liberal Arts: Associate degree, Bachelor's degree, Master's degree.</code>    |
  | <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Artes Liberales: The historical basis for the modern liberal arts, consisting of the trivium (grammar, logic, and rhetoric) and the quadrivium (arithmetic, geometry, astronomy, and music). General Education: That part of a liberal education curriculum that is shared by all students.</code>                                            |
  | <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Liberal Arts. Upon completion of the Liberal Arts degree, students will be able to express ideas in coherent, creative, and appropriate forms, orally and in writing. Students will be able to apply their reading abilities in order to interconnect an understanding of resources to academic, professional, and personal interests.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 32,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>sentence-transformers/gooaq</summary>

#### sentence-transformers/gooaq

* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 500,000 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 12.19 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 58.34 tokens</li><li>max: 124 tokens</li></ul> |
* Samples:
  | question                                           | answer                                                                                                                                                                                                                                                                                                                                          |
  |:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>is toprol xl the same as metoprolol?</code>  | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code>                                                                                                    |
  | <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> |
  | <code>how are babushka dolls made?</code>          | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code>                                           |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 32,
      "gather_across_devices": false
  }
  ```
</details>
<details><summary>sentence-transformers/natural-questions</summary>

#### sentence-transformers/natural-questions

* Dataset: [sentence-transformers/natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 100,231 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                               |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 12.47 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 138.28 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | query                                                           | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tig...</code> |
  | <code>who sang what in the world's come over you</code>         | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code>                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>who produces the most wool in the world</code>            | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code>                                                                                                                                                                                                                                                                                                                                                                                                           |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 32,
      "gather_across_devices": false
  }
  ```
</details>

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 2048
- `weight_decay`: 1e-06
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
- `gradient_checkpointing`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 1e-06
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.2626 | 500  | 4.2889        |
| 0.5252 | 1000 | 2.4545        |
| 0.7878 | 1500 | 2.0409        |
| 1.0504 | 2000 | 1.992         |
| 1.3130 | 2500 | 1.9145        |
| 1.5756 | 3000 | 1.6902        |
| 1.8382 | 3500 | 1.745         |


### Framework Versions
- Python: 3.12.10
- Sentence Transformers: 5.1.2
- Transformers: 4.53.2
- PyTorch: 2.7.1+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### CoSENTLoss
```bibtex
@article{10531646,
    author={Huang, Xiang and Peng, Hao and Zou, Dongcheng and Liu, Zhiwei and Li, Jianxin and Liu, Kay and Wu, Jia and Su, Jianlin and Yu, Philip S.},
    journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
    title={CoSENT: Consistent Sentence Embedding via Similarity Ranking},
    year={2024},
    doi={10.1109/TASLP.2024.3402087}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->