File size: 128,315 Bytes
c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c d4f93e5 c54851c ee7fda4 c54851c d4f93e5 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c d4f93e5 c54851c ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 d4f93e5 ee7fda4 c54851c d4f93e5 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c db3c618 c54851c ee7fda4 c54851c ee7fda4 c54851c db3c618 c54851c db3c618 c54851c db3c618 c54851c ee7fda4 c54851c ee7fda4 c54851c ee7fda4 c54851c db3c618 d4f93e5 c54851c db3c618 c54851c ee7fda4 c54851c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 |
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:3876398
- loss:CachedMultipleNegativesRankingLoss
- loss:CoSENTLoss
base_model: jhu-clsp/ettin-encoder-17m
widget:
- source_sentence: what important natural resources in west africa did the songhai
empire control
sentences:
- Timur In 1398, Timur invaded northern India, attacking the Delhi Sultanate ruled
by Sultan Nasir-ud-Din Mahmud Shah Tughluq of the Tughlaq Dynasty. He was opposed
by Ahirs and faced some reversals from the Jats, but the Sultanate at Delhi did
nothing to stop him.[59][60] After crossing the Indus river on 30 September 1398,
he sacked Tulamba and massacred its inhabitants.[61] Then he advanced and captured
Multan by October.[62]
- Timur In 1398, Timur invaded northern India, attacking the Delhi Sultanate ruled
by Sultan Nasir-ud-Din Mahmud Shah Tughluq of the Tughlaq Dynasty. He was opposed
by Ahirs and faced some reversals from the Jats, but the Sultanate at Delhi did
nothing to stop him.[59][60] After crossing the Indus river on 30 September 1398,
he sacked Tulamba and massacred its inhabitants.[61] Then he advanced and captured
Multan by October.[62]
- Timur In 1398, Timur invaded northern India, attacking the Delhi Sultanate ruled
by Sultan Nasir-ud-Din Mahmud Shah Tughluq of the Tughlaq Dynasty. He was opposed
by Ahirs and faced some reversals from the Jats, but the Sultanate at Delhi did
nothing to stop him.[59][60] After crossing the Indus river on 30 September 1398,
he sacked Tulamba and massacred its inhabitants.[61] Then he advanced and captured
Multan by October.[62]
- Indus Valley Civilisation Suggested contributory causes for the localisation of
the IVC include changes in the course of the river,[148] and climate change that
is also signalled for the neighbouring areas of the Middle East.[149][150] As
of 2016[update] many scholars believe that drought and a decline in trade with
Egypt and Mesopotamia caused the collapse of the Indus Civilisation.[151]
- History of West Africa In 1591, Morocco invaded the Songhai Empire under Ahmad
al-Mansur of the Saadi Dynasty to secure the goldfields of the Sahel. At the Battle
of Tondibi, the Songhai army was defeated. The Moroccans captured Djenne, Gao,
and Timbuktu, but they were unable to secure the whole region. Askiya Nuhu and
the Songhay army regrouped at Dendi in the heart of Songhai territory where a
spirited guerrilla resistance sapped the resources of the Moroccans, who were
dependent upon constant resupply from Morocco. Songhai split into several states
during the 17th century.
- Ancient Egypt The pharaoh was the absolute monarch of the country and, at least
in theory, wielded complete control of the land and its resources. The king was
the supreme military commander and head of the government, who relied on a bureaucracy
of officials to manage his affairs. In charge of the administration was his second
in command, the vizier, who acted as the king's representative and coordinated
land surveys, the treasury, building projects, the legal system, and the archives.[88]
At a regional level, the country was divided into as many as 42 administrative
regions called nomes each governed by a nomarch, who was accountable to the vizier
for his jurisdiction. The temples formed the backbone of the economy. Not only
were they houses of worship, but were also responsible for collecting and storing
the nation's wealth in a system of granaries and treasuries administered by overseers,
who redistributed grain and goods.[89]
- source_sentence: A group of friends and I went to a corn maize. It was a dark night
and the corn maize was said to be haunted. A scary man jumped out and scared us.
We ended up lost in the maize for two hours. We made it out and were glad we experienced
the maze together.
sentences:
- 'hypothesis: The median income for a household in the city was $26,969, and the
median income for a family was $31,997.'
- 'hypothesis: There is one objects is Daniel carrying.'
- 'hypothesis: We calmed down in order to solve the maize ends after we made it
out'
- source_sentence: J. David Spurlock was born on November 18 , 1959 in Dallas , Texas
. He moved to Memphis , Tennessee in 1973 .
sentences:
- David Spurlock was born on 18 November 1959 in Dallas , Texas , and moved to Memphis
, Tennessee in 1973 .
- This is a list of the etymology of street names in the district Covent Garden
in London .
- During the five days of the journey , he brought some books about Elba which he
studied from Fontainebleau .
- source_sentence: The musical films '' Mark Twain `` and '' Huckleberry Finn `` ,
both based on Tom Sawyer 's novels , were partially shot on site .
sentences:
- The musical films `` Mark Twain '' and `` Huckleberry Finn '' , both based on
Tom Sawyer 's novels , were shot partially on location here .
- His father called him Ali and his nickname was Murtaza .
- A KWL chart can be used for all subjects in a whole group or a small group atmosphere
.
- source_sentence: what blood type can donate blood to all other blood types.
sentences:
- A number of Blood donors also donate platelets by apheresis (a procedure in which
Blood is drawn from a Blood donor and separated into its components, some of which
are retained, such as plasma or platelets, and the remainder of the Blood is returned,
by transfusion, to the Blood donor; also called hemapheresis).
- "Uluru is easily the most iconic natural landform in Australia, and its formation\
\ was equally special.The creation of Uluru and Kata Tjuta â\x80\x94 as both were\
\ formed at the same time â\x80\x94 began over 500 million years ago. At this\
\ time the big crustal blocks that form the Australian continent coming together.luru\
\ is easily the most iconic natural landform in Australia, and its formation was\
\ equally special."
- "AB can only donate blood to other ABs. A can donate blood to As and ABs. B can\
\ donate blood to Bs and ABs. O can donate to all blood types. Negative Rh factors\
\ can donate toâ\x80¦ both positive and negative Rh factors, however postive Rh\
\ factors can only donate to other positive. So if I had O+ blood, I couldn't\
\ donate to A-, but could donate to A+."
datasets:
- tasksource/merged-2l-nli
- tasksource/merged-3l-nli
- tasksource/zero-shot-label-nli
- MoritzLaurer/dataset_train_nli
- google-research-datasets/paws
- nyu-mll/glue
- mwong/fever-evidence-related
- tasksource/sts-companion
- tomaarsen/natural-questions-hard-negatives
- tomaarsen/gooaq-hard-negatives
- bclavie/msmarco-500k-triplets
- sentence-transformers/all-nli
- sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
- sentence-transformers/gooaq
- sentence-transformers/natural-questions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on jhu-clsp/ettin-encoder-17m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) on 18 datasets. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) <!-- at revision 987607455c61e7a5bbc85f7758e0512ea6d0ae4c -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 256 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [merged-2l-nli](https://huggingface.co/datasets/tasksource/merged-2l-nli)
- [merged-3l-nli](https://huggingface.co/datasets/tasksource/merged-3l-nli)
- [zero-shot-label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli)
- [dataset_train_nli](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli)
- [paws/labeled_final](https://huggingface.co/datasets/paws)
- [glue/mrpc](https://huggingface.co/datasets/glue)
- [glue/qqp](https://huggingface.co/datasets/glue)
- [fever-evidence-related](https://huggingface.co/datasets/mwong/fever-evidence-related)
- [glue/stsb](https://huggingface.co/datasets/glue)
- sick/relatedness
- [sts-companion](https://huggingface.co/datasets/tasksource/sts-companion)
- [tomaarsen/natural-questions-hard-negatives](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives)
- [tomaarsen/gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives)
- [bclavie/msmarco-500k-triplets](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets)
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- [sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1)
- [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [sentence-transformers/natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tasksource/ettin-17m-embed")
# Run inference
queries = [
"what blood type can donate blood to all other blood types.",
]
documents = [
"AB can only donate blood to other ABs. A can donate blood to As and ABs. B can donate blood to Bs and ABs. O can donate to all blood types. Negative Rh factors can donate toâ\x80¦ both positive and negative Rh factors, however postive Rh factors can only donate to other positive. So if I had O+ blood, I couldn't donate to A-, but could donate to A+.",
'A number of Blood donors also donate platelets by apheresis (a procedure in which Blood is drawn from a Blood donor and separated into its components, some of which are retained, such as plasma or platelets, and the remainder of the Blood is returned, by transfusion, to the Blood donor; also called hemapheresis).',
'Uluru is easily the most iconic natural landform in Australia, and its formation was equally special.The creation of Uluru and Kata Tjuta â\x80\x94 as both were formed at the same time â\x80\x94 began over 500 million years ago. At this time the big crustal blocks that form the Australian continent coming together.luru is easily the most iconic natural landform in Australia, and its formation was equally special.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 256] [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.6392, 0.7162, -0.1267]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
<details><summary>merged-2l-nli</summary>
#### merged-2l-nli
* Dataset: [merged-2l-nli](https://huggingface.co/datasets/tasksource/merged-2l-nli) at [af845c6](https://huggingface.co/datasets/tasksource/merged-2l-nli/tree/af845c6b78a8ac3ea294666c2e5132cf6d5f4af0)
* Size: 221,613 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 66.07 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 15.66 tokens</li><li>max: 122 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
| <code>No Weapons of Mass Destruction Found in Iraq Yet.</code> | <code>hypothesis: Weapons of Mass Destruction Found in Iraq.</code> |
| <code>Mary is no longer in the bedroom. Daniel moved to the hallway.</code> | <code>hypothesis: Mary is in the bedroom.</code> |
| <code>The box of chocolates fits inside the chest. The box is bigger than the chest. The box is bigger than the suitcase. The suitcase fits inside the box. The container is bigger than the box of chocolates.</code> | <code>hypothesis: The box fit in the box of chocolates.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 48,
"gather_across_devices": false
}
```
</details>
<details><summary>merged-3l-nli</summary>
#### merged-3l-nli
* Dataset: [merged-3l-nli](https://huggingface.co/datasets/tasksource/merged-3l-nli) at [e311b1f](https://huggingface.co/datasets/tasksource/merged-3l-nli/tree/e311b1f45a8f8cc8d4b2c5b92dbc797a05bc069d)
* Size: 179,807 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 66.24 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 34.01 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| <code>A woman is slicing an onion</code> | <code>hypothesis: An onion is being sliced by a woman</code> |
| <code>John met Mary in the museum.</code> | <code>hypothesis: John was in the museum.</code> |
| <code>zion working_agreement safebreaker annulet willard seed_pearl fall_apart exaeretodon harshly shoddiness dehydrate bootes carlsbad_caverns fireman whitey phobophobia cornish wisp achromatous organization_of_petroleum-exporting_countries declaw coordinate_axis molded_salad apeldoorn gas_fitting main-topsail inert loosely_knit passivity inhalation_anesthesia draconian arteriosclerotic acquiescence paige subpopulation tewkesbury mekong lastingness trademarked fall_apart dreyfus columniation amphibole_group cryonic nubian_desert fall_apart sclera shirred_egg parented dehiscent fall_apart aflatoxin creosol disenfranchise annonaceae fringed_pink turn state moat agammaglobulinemia endodontics still_life pilaster clotting_time anthrax agamemnon watered_stock vela hao payback valuation humiliation bread homeopath friendliness exercise_device cryptic teletypewriter daycare air_bubble sachem fall_apart synchronous_converter unforethoughtful swad labial_stop housemate antiaircraft napier redeploy p...</code> | <code>hypothesis: The sequence contains exactly 5 instances of the element 'fall_apart'.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 48,
"gather_across_devices": false
}
```
</details>
<details><summary>zero-shot-label-nli</summary>
#### zero-shot-label-nli
* Dataset: [zero-shot-label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli) at [b363c89](https://huggingface.co/datasets/tasksource/zero-shot-label-nli/tree/b363c895cd4b15b814b9dbd7e4466cd301c96b2a)
* Size: 499,439 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 63.96 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 12.15 tokens</li><li>max: 20 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|
| <code>Tonight you barely say a word, but in your eyes I see everything. A whole conversation is being kept locked away. Just let me know, Darling, when did you plan to tell me falling in love wasn't for us? Your heart doesn't belong to me and you'll never hold my hand quite the same way. Keep the charade of a picture perfect romance up, because the bitter conclusion is coming my way. You'll regret not having a sequel in this romance. I'll show you that I'm the girl you let get away, the one you should have held on to. Breathing is the only thing keeping me alive, but I'll do it just to kill you inside.</code> | <code>hypothesis: This example is Leo.</code> |
| <code>Amrozi said Jews and the US and its allies had evil plans to colonise countries like Indonesia .<br>Jews , Americans and their allies had " evil " plans to colonise nations like Indonesia , Amrozi said .</code> | <code>hypothesis: This example is equivalent.</code> |
| <code>A baby is playing outdoors on a sunny day sitting in a colorful kids chair playing with toys , biting the top of a blue toy , with a back drop of green grass and neighborhood fence .<br>It is likely that a kid is enjoying all his new toys</code> | <code>hypothesis: This example is invalid.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 48,
"gather_across_devices": false
}
```
</details>
<details><summary>dataset_train_nli</summary>
#### dataset_train_nli
* Dataset: [dataset_train_nli](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli) at [1e00964](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli/tree/1e009645b2943106614107b06107b1ee85ac1161)
* Size: 60,083 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 93.99 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 17.99 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
| <code>how long will my cash withdrawal be pending for?</code> | <code>hypothesis: This banking customer example message is about a pending cash withdrawal.</code> |
| <code>We believe police must be properly resourced to achieve their stated objectives and meet our diverse communities’ expectations. Labour recognises that properly resourcing community policing is a major factor to successfully implementing a ‘prevention first’ operational strategy and is vital if the Police is to retain the trust and confidence of the general public.</code> | <code>hypothesis: This example text from a political party manifesto is positive towards law and order and strict law enforcement</code> |
| <code>Schwab to pay deposed CEO \$10 million in cash plus stock SAN FRANCISCO Slumping stock brokerage Charles Schwab has promised to pay ten (m) million dollars in cash to recently ousted chief executive David Pottruck.</code> | <code>hypothesis: This example news text is about business news</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 48,
"gather_across_devices": false
}
```
</details>
<details><summary>paws/labeled_final</summary>
#### paws/labeled_final
* Dataset: [paws/labeled_final](https://huggingface.co/datasets/paws) at [161ece9](https://huggingface.co/datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 21,829 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.72 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 27.7 tokens</li><li>max: 56 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|
| <code>The NBA season of 1975 -- 76 was the 30th season of the National Basketball Association .</code> | <code>The 1975 -- 76 season of the National Basketball Association was the 30th season of the NBA .</code> |
| <code>When comparable rates of flow can be maintained , the results are high .</code> | <code>The results are high when comparable flow rates can be maintained .</code> |
| <code>It is the seat of Zerendi District in Akmola Region .</code> | <code>It is the seat of the district of Zerendi in Akmola region .</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 48,
"gather_across_devices": false
}
```
</details>
<details><summary>glue/mrpc</summary>
#### glue/mrpc
* Dataset: [glue/mrpc](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 2,474 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 27.89 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 27.81 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
| <code>Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .</code> | <code>Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .</code> |
| <code>They had published an advertisement on the Internet on June 10 , offering the cargo for sale , he added .</code> | <code>On June 10 , the ship 's owners had published an advertisement on the Internet , offering the explosives for sale .</code> |
| <code>The stock rose $ 2.11 , or about 11 percent , to close Friday at $ 21.51 on the New York Stock Exchange .</code> | <code>PG & E Corp. shares jumped $ 1.63 or 8 percent to $ 21.03 on the New York Stock Exchange on Friday .</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 48,
"gather_across_devices": false
}
```
</details>
<details><summary>glue/qqp</summary>
#### glue/qqp
* Dataset: [glue/qqp](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 61,498 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.63 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.74 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------|:-------------------------------------------------------|
| <code>"Is it possible to never get ""over"" someone?"</code> | <code>Is it possible to never get over someone?</code> |
| <code>Does my college major matter?</code> | <code>Does college degrees really matter?</code> |
| <code>What is the importance of money in ones life?</code> | <code>Why money is important in our life?</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 48,
"gather_across_devices": false
}
```
</details>
<details><summary>fever-evidence-related</summary>
#### fever-evidence-related
* Dataset: [fever-evidence-related](https://huggingface.co/datasets/mwong/fever-evidence-related) at [14aba00](https://huggingface.co/datasets/mwong/fever-evidence-related/tree/14aba009b5fcd97b1a9ee6f3e3b0da0e308cf7cb)
* Size: 117,818 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.69 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 35 tokens</li><li>mean: 187.03 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The Amazing Spider-Man 2 is a movie.</code> | <code>Lieutenant Aung San Thuriya Thuya Thai Con -LRB- aka -RRB- Lieutenant Thai Con -LRB- serial no : -LRB- Kyee -RRB- 7288 -RRB- was the only Chin soldier to have received both Thuya and Aung San Thuriya Medal , the highest and most prestigious award for gallantry and bravery in the face of the enemy that can be awarded to members of Myanmar Armed Forces .. Lieutenant. Lieutenant. Chin. Chin. Aung San Thuriya. Aung San Thuriya. Thuya. Thuya. He won the award at the Raid on U Seikkein Monastery at Battle of Insein near during the fight against of Karen insurgency in Myanmar .. Battle of Insein. Battle of Insein. Karen. Karen people. The raid on U Seikkein Monastery can be regarded as one of the most prominent part of Battle of Insein .. Battle of Insein. Battle of Insein. The structural pattern of U Sakkein monastery was something like a systematically built fortress .. It was built on a hillock surrounded by other monasteries .. The Karen insurgents were using these monasteries on the hil...</code> |
| <code>Muhammad was Catholic.</code> | <code>Lamp Unto My Feet was an American ecumenical religious program that was produced by CBS Television and broadcast from 1948 to 1979 on Sunday mornings .. CBS Television. CBS Television. ecumenical. ecumenical</code> |
| <code>Bradley Whitford is an actor that stars in the movie Get Out.</code> | <code>Adem Karapici was an Albanian football player and coach who played for Sportklub Tirane in the 1930s where he won six National Championships .. Sportklub Tirane. KF Tirana. football. football ( soccer ). National Championships. Albanian Superliga. As a coach , he was in charge of Albania national team for five games between 1947 and 1948 .. Albania. Albania. Albania national team. Albania national football team</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 48,
"gather_across_devices": false
}
```
</details>
<details><summary>glue/stsb</summary>
#### glue/stsb
* Dataset: [glue/stsb](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 10.16 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.12 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.23</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:-------------------------------|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>5.0</code> |
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>3.799999952316284</code> |
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>3.799999952316284</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
</details>
<details><summary>sick/relatedness</summary>
#### sick/relatedness
* Dataset: sick/relatedness
* Size: 4,439 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 12.66 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.46 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 3.41</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-------------------------------|
| <code>A group of kids is playing in a yard and an old man is standing in the background</code> | <code>A group of boys in a yard is playing and a man is standing in the background</code> | <code>4.5</code> |
| <code>A group of children is playing in the house and there is no man standing in the background</code> | <code>A group of kids is playing in a yard and an old man is standing in the background</code> | <code>3.200000047683716</code> |
| <code>The young boys are playing outdoors and the man is smiling nearby</code> | <code>The kids are playing outdoors near a man with a smile</code> | <code>4.699999809265137</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
</details>
<details><summary>sts-companion</summary>
#### sts-companion
* Dataset: [sts-companion](https://huggingface.co/datasets/tasksource/sts-companion) at [fd8beff](https://huggingface.co/datasets/tasksource/sts-companion/tree/fd8beffb788df5f6673bc688e6dcbe3690a3acc6)
* Size: 4,760 training samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | float | string | string |
| details | <ul><li>min: 0.0</li><li>mean: 3.09</li><li>max: 5.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.91 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.28 tokens</li><li>max: 83 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:-----------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
| <code>1.6</code> | <code>this lus in this frame refer to biological entities labeled by the fe organism. an organism is described as something that can be alive, or have naturally occuring biological processes and functions, however the concept of life is often used metaphorically for non-organic entities which resemble or act as if they have organic life.</code> | <code>living things collectively;</code> |
| <code>3.8</code> | <code>Washington's Economic Boom, Financed by You Real life "Hunger Games"</code> | <code>Washington?s Economic Boom, Financed by You</code> |
| <code>4.4</code> | <code>Knowledge of foreign languages is accepted as a necessary precursor to mobility.</code> | <code>It is accepted that knowledge of foreign languages is a necessary precondition to mobility.</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
</details>
<details><summary>tomaarsen/natural-questions-hard-negatives</summary>
#### tomaarsen/natural-questions-hard-negatives
* Dataset: [tomaarsen/natural-questions-hard-negatives](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives) at [52dfa09](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives/tree/52dfa09a3d5d3f90e7e115c407ccebe30fe79764)
* Size: 96,658 training samples
* Columns: <code>query</code>, <code>answer</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, and <code>negative_5</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string | string | string | string | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 12.52 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 137.81 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 143.36 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 142.38 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 145.93 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 145.76 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 141.95 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| query | answer | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 |
|:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tig...</code> | <code>Brisbane Bears However, the club was still struggling off-field. One of the Bears' biggest problems was its lack of support (both on and off the field) in Melbourne, the location of most of its away matches. In mid-1996, the struggling Fitzroy Football Club collapsed due to financial pressures and was seeking to merge its assets with another club. When a merger with North Melbourne in forming the North Fitzroy Kangaroos failed to win the support of the other AFL clubs, a deal for a merger was done between Fitzroy and the Bears. The new team was known as the Brisbane Lions, based at the Gabba, with Northey as the coach of the merged club. As such, the history of the Brisbane Bears as an individual entity ended after the 1996 season, with ten seasons of competition and the third-place finish in 1996 as its best performance. The Bears last match as a separate entity was a preliminary final on Saturday 21 September 1996 at the Melbourne Cricket Ground (where the Bears played their first VF...</code> | <code>Virginia Tech–West Virginia football rivalry Virginia Tech held the trophy in six of the nine years in which it was contested, but West Virginia leads the all-time series 28–23–1. The last game was played on September 3, 2017 at FedEx Field in Landover, MD; Virginia Tech won 31–24.</code> | <code>Martin Truex Jr. To start off the Round of 12, Truex scored his 6th win of the season at Charlotte after leading 91 out of 334 laps to secure a spot for the Round of 8. Just two weeks later, he scored another win at Kansas despite having a restart violation early in the race.</code> | <code>Adelaide Football Club Star midfielder for many years Patrick Dangerfield left the club at the end of the 2015 season (a season in which he won the club's best and fairest) and Don Pyke, a former premiership player and assistant coach with West Coast who had also been an assistant coach at Adelaide from 2005 to 2006, was appointed Adelaide's senior coach for at least three years.[9] Adelaide was widely tipped to slide out of the finals in 2016[27][28][29] but the Crows proved to be one of the successes of the season, comfortably qualifying for a home elimination final and defeating North Melbourne by 62 points, before being eliminated the next week by eventual beaten grand finalists, Sydney in the semi-finals. The club had a dominant 2017 season, winning their opening six games and never falling below second place for the entire season. Adelaide claimed their second McClelland Trophy as minor premiers.[30] The Adelaide Crows entered the 2017 finals series as favourites for the premiers...</code> | <code>Battle of Appomattox Court House The Battle of Appomattox Court House (Virginia, U.S.), fought on the morning of April 9, 1865, was one of the last battles of the American Civil War (1861–1865). It was the final engagement of Confederate States Army General-in-Chief, Robert E. Lee, and his Army of Northern Virginia before it surrendered to the Union Army of the Potomac under the Commanding General of the United States, Ulysses S. Grant. Lee, having abandoned the Confederate capital of Richmond, Virginia, after the nine and one-half month Siege of Petersburg and Richmond, retreated west, hoping to join his army with the remaining Confederate forces in North Carolina, the Army of Tennessee under Gen. Joseph E. Johnston. Union infantry and cavalry forces under Gen. Philip Sheridan pursued and cut off the Confederates' retreat at the central Virginia village of Appomattox Court House. Lee launched a last-ditch attack to break through the Union forces to his front, assuming the Union forc...</code> |
| <code>who sang what in the world's come over you</code> | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code> | <code>Lover, You Should've Come Over "Lover, You Should've Come Over" is the seventh track on Jeff Buckley's album Grace. Inspired by the ending of the relationship between Buckley and Rebecca Moore,[1] it concerns the despondency of a young man growing older, finding that his actions represent a perspective he feels that he should have outgrown. Biographer and critic David Browne describes the lyrics as "confused and confusing" and the music as "a languid beauty."[1]</code> | <code>It's Christmas (All Over The World) "It's Christmas (All Over The World)" is a song recorded by Scottish singer Sheena Easton. It was released in November 1985 as the theme song from the soundtrack of Santa Claus: The Movie. The song was written by Bill House and John Hobbs.</code> | <code>The End of the World (Skeeter Davis song) "The End of the World" is a country pop song written by Arthur Kent and Sylvia Dee, for American singer Skeeter Davis. It had success in the 1960s and spawned many covers.</code> | <code>Israel Kamakawiwoʻole His voice became famous outside Hawaii when his album Facing Future was released in 1993. His medley of "Somewhere Over the Rainbow/What a Wonderful World" was released on his albums Ka ʻAnoʻi and Facing Future. It was subsequently featured in several films, television programs, and television commercials.</code> | <code>Make the World Go Away "Make the World Go Away'" is a country-popular music song composed by Hank Cochran. It has become a Top 40 popular success three times: for Timi Yuro (during 1963), for Eddy Arnold (1965), and for the brother-sister duo Donny and Marie Osmond (1975). The original version of the song was recorded by Ray Price during 1963. It has remained a country crooner standard ever since.</code> |
| <code>who produces the most wool in the world</code> | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code> | <code>Baa, Baa, Black Sheep As with many nursery rhymes, attempts have been made to find origins and meanings for the rhyme, most which have no corroborating evidence.[1] Katherine Elwes Thomas in The Real Personages of Mother Goose (1930) suggested that the rhyme referred to resentment at the heavy taxation on wool.[5] This has particularly been taken to refer to the medieval English "Great" or "Old Custom" wool tax of 1275, which survived until the fifteenth century.[1] More recently the rhyme has been connected to the slave trade, particularly in the southern United States.[6] This explanation was advanced during debates over political correctness and the use and reform of nursery rhymes in the 1980s, but has no supporting historical evidence.[7] Rather than being negative, the wool of black sheep may have been prized as it could be made into dark cloth without dyeing.[6]</code> | <code>Raymond Group Raymond Group is an Indian branded fabric and fashion retailer, incorporated in 1925. It produces suiting fabric, with a capacity of producing 31 million meters of wool and wool-blended fabrics. Gautam Singhania is the chairman and managing director of the Raymond group.[3]</code> | <code>Silk in the Indian subcontinent Silk in the Indian subcontinent is a luxury good. In India, about 97% of the raw mulberry silk is produced in the five Indian states of Karnataka, Andhra Pradesh, Tamil Nadu, West Bengal and Jammu and Kashmir.[1] Mysore and North Bangalore, the upcoming site of a US$20 million "Silk City", contribute to a majority of silk production.[2] Another emerging silk producer is Tamil Nadu where mulberry cultivation is concentrated in Salem, Erode and Dharmapuri districts. Hyderabad, Andhra Pradesh and Gobichettipalayam, Tamil Nadu were the first locations to have automated silk reeling units.[3] yoyo quantity:::</code> | <code>F. W. Woolworth Company The two Woolworth brothers pioneered and developed merchandising, direct purchasing, sales, and customer service practices commonly used today. Despite its growing to be one of the largest retail chains in the world through most of the 20th century, increased competition led to its decline beginning in the 1980s, while its sporting goods division grew. The chain went out of business in July 1997, when the company decided to focus primarily on sporting goods and renamed itself Venator Group. By 2001, the company focused exclusively on the sporting goods market, changing its name to the present Foot Locker, Inc., changing its ticker symbol from its familiar Z in 2003 to its present ticker (NYSE:Â FL).</code> | <code>Silk Silk's absorbency makes it comfortable to wear in warm weather and while active. Its low conductivity keeps warm air close to the skin during cold weather. It is often used for clothing such as shirts, ties, blouses, formal dresses, high fashion clothes, lining, lingerie, pajamas, robes, dress suits, sun dresses and Eastern folk costumes. For practical use, silk is excellent as clothing that protects from many biting insects that would ordinarily pierce clothing, such as mosquitoes and horseflies.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32,
"gather_across_devices": false
}
```
</details>
<details><summary>tomaarsen/gooaq-hard-negatives</summary>
#### tomaarsen/gooaq-hard-negatives
* Dataset: [tomaarsen/gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2)
* Size: 500,000 training samples
* Columns: <code>question</code>, <code>answer</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, and <code>negative_5</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string | string | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.99 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 57.82 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.42 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 56.84 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.08 tokens</li><li>max: 155 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 57.54 tokens</li><li>max: 129 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 58.23 tokens</li><li>max: 195 tokens</li></ul> |
* Samples:
| question | answer | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 |
|:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is toprol xl the same as metoprolol?</code> | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code> | <code>Secondly, metoprolol and metoprolol ER have different brand-name equivalents: Brand version of metoprolol: Lopressor. Brand version of metoprolol ER: Toprol XL.</code> | <code>Pill with imprint 1 is White, Round and has been identified as Metoprolol Tartrate 25 mg.</code> | <code>Interactions between your drugs No interactions were found between Allergy Relief and metoprolol. This does not necessarily mean no interactions exist. Always consult your healthcare provider.</code> | <code>Metoprolol is a type of medication called a beta blocker. It works by relaxing blood vessels and slowing heart rate, which improves blood flow and lowers blood pressure. Metoprolol can also improve the likelihood of survival after a heart attack.</code> | <code>Metoprolol starts to work after about 2 hours, but it can take up to 1 week to fully take effect. You may not feel any different when you take metoprolol, but this doesn't mean it's not working. It's important to keep taking your medicine.</code> |
| <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> | <code>I Saw the Light. Showcasing the unique talent and musical influence of country-western artist Hank Williams, this candid biography also sheds light on the legacy of drug abuse and tormented relationships that contributes to the singer's legend.</code> | <code>(Read our ranking of his top 10.) And while Howard dresses the part of director, any notion of him as a tortured auteur or dictatorial taskmasker — the clichés of the Hollywood director — are tossed aside. He's very nice.</code> | <code>He was a music star too. Where're you people born and brought up? We 're born and brought up here in Anambra State at Nkpor town, near Onitsha.</code> | <code>At the age of 87 he has now retired from his live shows and all the traveling involved. And although he still picks up his Martin Guitar and does a show now and then, his life is now devoted to writing his memoirs.</code> | <code>The owner of the mysterious voice behind all these videos is a man who's seen a lot, visiting a total of 56 intimate celebrity spaces over the course of five years. His name is Joe Sabia — that's him in the photo — and he's currently the VP of creative development at Condé Nast Entertainment.</code> |
| <code>how are babushka dolls made?</code> | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code> | <code>A quick scan of the auction and buy-it-now listings on eBay finds porcelain doll values ranging from around $5 and $10 to several thousand dollars or more but no dolls listed above $10,000.</code> | <code>Japanese dolls are called as ningyō in Japanese and literally translates to 'human form'.</code> | <code>Matyoo: All Fresno Girl dolls come just as real children are born.</code> | <code>As of September 2016, there are over 100 characters. The main toy line includes 13-inch Dolls, the mini-series, and a variety of mini play-sets and plush dolls as well as Lalaloopsy Littles, smaller siblings of the 13-inch dolls. A spin-off known as "Lala-Oopsies" came out in late 2012.</code> | <code>LOL dolls are little baby dolls that come wrapped inside a surprise toy ball. Each ball has layers that contain stickers, secret messages, mix and match accessories–and finally–a doll. ... The doll on the ball is almost never the doll inside. Dolls are released in series, so not every doll is available all the time.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32,
"gather_across_devices": false
}
```
</details>
<details><summary>bclavie/msmarco-500k-triplets</summary>
#### bclavie/msmarco-500k-triplets
* Dataset: [bclavie/msmarco-500k-triplets](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets) at [cb1a85c](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets/tree/cb1a85c1261fa7c65f4ea43f94e50f8b467c372f)
* Size: 500,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.31 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 82.19 tokens</li><li>max: 216 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 78.99 tokens</li><li>max: 209 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>the most important factor that influences k+ secretion is __________.</code> | <code>The regulation of K+ distribution between the intracellular and extracellular space is referred to as internal K+ balance. The most important factors regulating this movement under normal conditions are insulin and catecholamines (1).</code> | <code>They are both also important for secretion and flow of bile: 1 Cholecystokinin: The name of this hormone describes its effect on the biliary system-cholecysto = gallbladder and kinin = movement. 2 Secretin: This hormone is secreted in response to acid in the duodenum.</code> |
| <code>how much did the mackinac bridge cost to build</code> | <code>The cost to design the project was $3,500,000 (Steinman Company). The cost to construct the bridge was $70, 268,500. Two primary contractors were hired to build the bridge: American Bridge for superstructure - $44,532,900; and Merritt-Chapman and Scott of New York for the foundations - $25,735,600.</code> | <code>When your child needs a dental tooth bridge, you need to know the average cost so you can factor the price into your budget. Several factors affect the price of a bridge, which can run between $700 to $1,500 per tooth. If you have insurance or your child is covered by Medicaid, part of the cost may be covered.</code> |
| <code>when do concussion symptoms appear</code> | <code>Then you can get advice on what to do next. For milder symptoms, the doctor may recommend rest and ask you to watch your child closely for changes, such as a headache that gets worse. Symptoms of a concussion don't always show up right away, and can develop within 24 to 72 hours after an injury.</code> | <code>Concussion: A traumatic injury to soft tissue, usually the brain, as a result of a violent blow, shaking, or spinning. A brain concussion can cause immediate but temporary impairment of brain functions, such as thinking, vision, equilibrium, and consciousness. After a person has had a concussion, he or she is at increased risk for recurrence. Moreover, after a person has several concussions, less of a blow can cause injury, and the person can require more time to recover.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32,
"gather_across_devices": false
}
```
</details>
<details><summary>sentence-transformers/all-nli</summary>
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 500,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.91 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.49 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32,
"gather_across_devices": false
}
```
</details>
<details><summary>sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1</summary>
#### sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
* Dataset: [sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 500,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 9.87 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 44 tokens</li><li>mean: 85.25 tokens</li><li>max: 211 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 81.18 tokens</li><li>max: 227 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Rather than preparing students for a specific career, liberal arts programs focus on cultural literacy and hone communication and analytical skills. They often cover various disciplines, ranging from the humanities to social sciences. 1 Program Levels in Liberal Arts: Associate degree, Bachelor's degree, Master's degree.</code> |
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Artes Liberales: The historical basis for the modern liberal arts, consisting of the trivium (grammar, logic, and rhetoric) and the quadrivium (arithmetic, geometry, astronomy, and music). General Education: That part of a liberal education curriculum that is shared by all students.</code> |
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Liberal Arts. Upon completion of the Liberal Arts degree, students will be able to express ideas in coherent, creative, and appropriate forms, orally and in writing. Students will be able to apply their reading abilities in order to interconnect an understanding of resources to academic, professional, and personal interests.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32,
"gather_across_devices": false
}
```
</details>
<details><summary>sentence-transformers/gooaq</summary>
#### sentence-transformers/gooaq
* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 500,000 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 12.19 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 58.34 tokens</li><li>max: 124 tokens</li></ul> |
* Samples:
| question | answer |
|:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is toprol xl the same as metoprolol?</code> | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code> |
| <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> |
| <code>how are babushka dolls made?</code> | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32,
"gather_across_devices": false
}
```
</details>
<details><summary>sentence-transformers/natural-questions</summary>
#### sentence-transformers/natural-questions
* Dataset: [sentence-transformers/natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 100,231 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 12.47 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 138.28 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| query | answer |
|:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tig...</code> |
| <code>who sang what in the world's come over you</code> | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code> |
| <code>who produces the most wool in the world</code> | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32,
"gather_across_devices": false
}
```
</details>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 2048
- `weight_decay`: 1e-06
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
- `gradient_checkpointing`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 1e-06
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.2626 | 500 | 4.2889 |
| 0.5252 | 1000 | 2.4545 |
| 0.7878 | 1500 | 2.0409 |
| 1.0504 | 2000 | 1.992 |
| 1.3130 | 2500 | 1.9145 |
| 1.5756 | 3000 | 1.6902 |
| 1.8382 | 3500 | 1.745 |
### Framework Versions
- Python: 3.12.10
- Sentence Transformers: 5.1.2
- Transformers: 4.53.2
- PyTorch: 2.7.1+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### CoSENTLoss
```bibtex
@article{10531646,
author={Huang, Xiang and Peng, Hao and Zou, Dongcheng and Liu, Zhiwei and Li, Jianxin and Liu, Kay and Wu, Jia and Su, Jianlin and Yu, Philip S.},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
title={CoSENT: Consistent Sentence Embedding via Similarity Ranking},
year={2024},
doi={10.1109/TASLP.2024.3402087}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |