SPCC
This is a sentence-transformers model finetuned from cl-nagoya/ruri-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cl-nagoya/ruri-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'引越しでアンテナ外して',
'引っ越しに伴いアンテナ取り外しのみ依頼',
'引越し先で新規アンテナ設置を依頼',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
spcc - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9876 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,615 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 7.8 tokens
- max: 20 tokens
- min: 4 tokens
- mean: 9.32 tokens
- max: 20 tokens
- min: 3 tokens
- mean: 8.2 tokens
- max: 20 tokens
- Samples:
anchor positive negative アンテナ向きがズレてスカパー映らないアンテナ方向が狂い視聴できないテレビ本体の電源が落ちて映らないICカード無いせいでプレミアム見れないICカード未申請で一部チャンネル視聴不可チューナー故障で全チャンネル映らないSONYチューナー壊れて受信不能SONY製チューナー不具合で映像来ないBSアンテナ設置ミスで映らない - Loss:
TripletLosswith these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.25 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05warmup_ratio: 0.1fp16: Truedataloader_drop_last: Trueremove_unused_columns: Falsebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Falselabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | spcc_cosine_accuracy |
|---|---|---|---|
| -1 | -1 | - | 0.9059 |
| 0.2 | 10 | 0.1661 | - |
| 0.4 | 20 | 0.0568 | - |
| 0.6 | 30 | 0.0299 | - |
| 0.8 | 40 | 0.022 | - |
| 1.02 | 50 | 0.0249 | 0.9851 |
| 1.22 | 60 | 0.0081 | - |
| 1.42 | 70 | 0.0072 | - |
| 1.62 | 80 | 0.0074 | - |
| 1.8200 | 90 | 0.0071 | - |
| 2.04 | 100 | 0.0062 | 0.9851 |
| 2.24 | 110 | 0.0084 | - |
| 2.44 | 120 | 0.0035 | - |
| 2.64 | 130 | 0.0034 | - |
| 2.84 | 140 | 0.0018 | - |
| 0.2 | 10 | 0.0023 | - |
| 0.4 | 20 | 0.0007 | - |
| 0.6 | 30 | 0.0012 | - |
| 0.8 | 40 | 0.0043 | - |
| 1.02 | 50 | 0.0058 | 0.9876 |
| 1.22 | 60 | 0.0005 | - |
| 1.42 | 70 | 0.0025 | - |
| 1.62 | 80 | 0.0011 | - |
| 1.8200 | 90 | 0.0026 | - |
| 2.04 | 100 | 0.0026 | 0.9876 |
| 2.24 | 110 | 0.0021 | - |
| 2.44 | 120 | 0.0015 | - |
| 2.64 | 130 | 0.0019 | - |
| 2.84 | 140 | 0.0 | - |
| 0.2 | 10 | 0.0003 | - |
| 0.4 | 20 | 0.0001 | - |
| 0.6 | 30 | 0.0006 | - |
| 0.8 | 40 | 0.0026 | - |
| 1.02 | 50 | 0.0018 | 0.9876 |
| 1.22 | 60 | 0.0007 | - |
| 1.42 | 70 | 0.0019 | - |
| 1.62 | 80 | 0.0006 | - |
| 1.8200 | 90 | 0.0011 | - |
| 2.04 | 100 | 0.0012 | 0.9876 |
| 2.24 | 110 | 0.0003 | - |
| 2.44 | 120 | 0.0 | - |
| 2.64 | 130 | 0.0014 | - |
| 2.84 | 140 | 0.0 | - |
| -1 | -1 | - | 0.9876 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 11
Model tree for tdm503/spcc-finetuned
Base model
tohoku-nlp/bert-base-japanese-v3
Finetuned
cl-nagoya/ruri-pt-large
Finetuned
cl-nagoya/ruri-large