File size: 7,166 Bytes
32fc83b
 
 
 
 
 
 
 
 
 
 
b2a7ea7
 
 
 
 
 
 
32fc83b
 
 
 
 
 
 
5b6b1bc
 
 
198850d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b6b1bc
 
 
 
 
198850d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b6b1bc
32fc83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
library_name: transformers.js
base_model: onnx-community/TinySwallow-1.5B-Instruct-ONNX
tags:
- TensorBlock
- GGUF
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## onnx-community/TinySwallow-1.5B-Instruct-ONNX - GGUF

This repo contains GGUF format model files for [onnx-community/TinySwallow-1.5B-Instruct-ONNX](https://huggingface.co/onnx-community/TinySwallow-1.5B-Instruct-ONNX).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">🚀 Try it now! 🚀</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">👀 See what we built 👀</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">👀 See what we built 👀</a>
    </th>
  </tr>
</table>
## Prompt template

```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [TinySwallow-1.5B-Instruct-ONNX-Q2_K.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q2_K.gguf) | Q2_K | 0.006 GB | smallest, significant quality loss - not recommended for most purposes |
| [TinySwallow-1.5B-Instruct-ONNX-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q3_K_S.gguf) | Q3_K_S | 0.006 GB | very small, high quality loss |
| [TinySwallow-1.5B-Instruct-ONNX-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q3_K_M.gguf) | Q3_K_M | 0.006 GB | very small, high quality loss |
| [TinySwallow-1.5B-Instruct-ONNX-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q3_K_L.gguf) | Q3_K_L | 0.006 GB | small, substantial quality loss |
| [TinySwallow-1.5B-Instruct-ONNX-Q4_0.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q4_0.gguf) | Q4_0 | 0.006 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [TinySwallow-1.5B-Instruct-ONNX-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q4_K_S.gguf) | Q4_K_S | 0.006 GB | small, greater quality loss |
| [TinySwallow-1.5B-Instruct-ONNX-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q4_K_M.gguf) | Q4_K_M | 0.006 GB | medium, balanced quality - recommended |
| [TinySwallow-1.5B-Instruct-ONNX-Q5_0.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q5_0.gguf) | Q5_0 | 0.006 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [TinySwallow-1.5B-Instruct-ONNX-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q5_K_S.gguf) | Q5_K_S | 0.006 GB | large, low quality loss - recommended |
| [TinySwallow-1.5B-Instruct-ONNX-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q5_K_M.gguf) | Q5_K_M | 0.006 GB | large, very low quality loss - recommended |
| [TinySwallow-1.5B-Instruct-ONNX-Q6_K.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q6_K.gguf) | Q6_K | 0.006 GB | very large, extremely low quality loss |
| [TinySwallow-1.5B-Instruct-ONNX-Q8_0.gguf](https://huggingface.co/tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF/blob/main/TinySwallow-1.5B-Instruct-ONNX-Q8_0.gguf) | Q8_0 | 0.006 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF --include "TinySwallow-1.5B-Instruct-ONNX-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/TinySwallow-1.5B-Instruct-ONNX-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```