Update README.md
Browse files
README.md
CHANGED
|
@@ -14,3 +14,58 @@ when using the initial version, the decoder ((autoencoder_arm.onnx)) crashes the
|
|
| 14 |
|
| 15 |
nothing to see here, yet... just wanted a place to store these.
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
nothing to see here, yet... just wanted a place to store these.
|
| 16 |
|
| 17 |
+
like everything else i do...pure vibes zero real knowledge.
|
| 18 |
+
|
| 19 |
+
Here's a python script i used to validate outputs against the original pytorch model.
|
| 20 |
+
|
| 21 |
+
there's another one using cfg stuff that gets essentially the same outputs.
|
| 22 |
+
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
#!/usr/bin/env python
|
| 26 |
+
import numpy as np, soundfile as sf, onnxruntime as ort
|
| 27 |
+
from transformers import AutoTokenizer
|
| 28 |
+
|
| 29 |
+
# Load ONNX models
|
| 30 |
+
dit = ort.InferenceSession("diffusion_dit_arm.onnx")
|
| 31 |
+
cond = ort.InferenceSession("conditioners.onnx")
|
| 32 |
+
dec = ort.InferenceSession("autoencoder_arm.onnx")
|
| 33 |
+
|
| 34 |
+
# Config
|
| 35 |
+
prompt = "lo-fi hip-hop beat with pianos 90bpm"
|
| 36 |
+
steps = 10
|
| 37 |
+
rng = np.random.RandomState(12345)
|
| 38 |
+
x = rng.randn(1, 64, 256).astype(np.float32)
|
| 39 |
+
|
| 40 |
+
# Conditioning
|
| 41 |
+
tok = AutoTokenizer.from_pretrained("t5-base")
|
| 42 |
+
tokens = tok(prompt, truncation=True, padding="max_length", max_length=128, return_tensors="np")
|
| 43 |
+
conds = cond.run(None, {
|
| 44 |
+
"input_ids": tokens["input_ids"].astype(np.int64),
|
| 45 |
+
"attention_mask": tokens["attention_mask"].astype(np.int64),
|
| 46 |
+
"seconds_total": np.array([10.0], dtype=np.float32)
|
| 47 |
+
})
|
| 48 |
+
cross, _, glob = conds
|
| 49 |
+
|
| 50 |
+
# Run 10 steps with linear t, no CFG
|
| 51 |
+
for i in range(steps):
|
| 52 |
+
t_val = 1.0 - i / (steps - 1)
|
| 53 |
+
t = np.array([t_val], dtype=np.float32)
|
| 54 |
+
|
| 55 |
+
v = dit.run(None, {
|
| 56 |
+
"x": x, "t": t,
|
| 57 |
+
"cross_attn_cond": cross,
|
| 58 |
+
"global_cond": glob
|
| 59 |
+
})[0]
|
| 60 |
+
|
| 61 |
+
x -= 0.1 * v # fixed Euler step
|
| 62 |
+
|
| 63 |
+
# Decode
|
| 64 |
+
audio = dec.run(None, {'sampled': x})[0]
|
| 65 |
+
if audio.shape[0] == 2:
|
| 66 |
+
audio = audio.T
|
| 67 |
+
audio /= np.abs(audio).max()
|
| 68 |
+
sf.write("onnx_lofi_linear.wav", audio, 44100)
|
| 69 |
+
print("✅ onnx_lofi_linear.wav written!")
|
| 70 |
+
|
| 71 |
+
```
|