Add model
Browse files- README.md +170 -0
- config.json +40 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- image-classification
|
| 4 |
+
- timm
|
| 5 |
+
library_name: timm
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
datasets:
|
| 8 |
+
- imagenet-1k
|
| 9 |
+
---
|
| 10 |
+
# Model card for eca_halonext26ts.c1_in1k
|
| 11 |
+
|
| 12 |
+
A HaloNet image classification model (with Efficient channel attention, based on ResNeXt architecture). Trained on ImageNet-1k in `timm` by Ross Wightman.
|
| 13 |
+
|
| 14 |
+
NOTE: this model did not adhere to any specific paper configuration, it was tuned for reasonable training times and reduced frequency of self-attention blocks.
|
| 15 |
+
|
| 16 |
+
Recipe details:
|
| 17 |
+
* Based on [ResNet Strikes Back](https://arxiv.org/abs/2110.00476) `C` recipes
|
| 18 |
+
* SGD (w/ Nesterov) optimizer and AGC (adaptive gradient clipping).
|
| 19 |
+
* Cosine LR schedule with warmup
|
| 20 |
+
|
| 21 |
+
This model architecture is implemented using `timm`'s flexible [BYOBNet (Bring-Your-Own-Blocks Network)](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/byobnet.py).
|
| 22 |
+
|
| 23 |
+
BYOB (with BYOANet attention specific blocks) allows configuration of:
|
| 24 |
+
* block / stage layout
|
| 25 |
+
* block-type interleaving
|
| 26 |
+
* stem layout
|
| 27 |
+
* output stride (dilation)
|
| 28 |
+
* activation and norm layers
|
| 29 |
+
* channel and spatial / self-attention layers
|
| 30 |
+
|
| 31 |
+
...and also includes `timm` features common to many other architectures, including:
|
| 32 |
+
* stochastic depth
|
| 33 |
+
* gradient checkpointing
|
| 34 |
+
* layer-wise LR decay
|
| 35 |
+
* per-stage feature extraction
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
## Model Details
|
| 39 |
+
- **Model Type:** Image classification / feature backbone
|
| 40 |
+
- **Model Stats:**
|
| 41 |
+
- Params (M): 10.8
|
| 42 |
+
- GMACs: 2.4
|
| 43 |
+
- Activations (M): 11.5
|
| 44 |
+
- Image size: 256 x 256
|
| 45 |
+
- **Papers:**
|
| 46 |
+
- Scaling Local Self-Attention for Parameter Efficient Visual Backbones: https://arxiv.org/abs/2103.12731
|
| 47 |
+
- ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
|
| 48 |
+
- **Dataset:** ImageNet-1k
|
| 49 |
+
|
| 50 |
+
## Model Usage
|
| 51 |
+
### Image Classification
|
| 52 |
+
```python
|
| 53 |
+
from urllib.request import urlopen
|
| 54 |
+
from PIL import Image
|
| 55 |
+
import timm
|
| 56 |
+
|
| 57 |
+
img = Image.open(urlopen(
|
| 58 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
| 59 |
+
))
|
| 60 |
+
|
| 61 |
+
model = timm.create_model('eca_halonext26ts.c1_in1k', pretrained=True)
|
| 62 |
+
model = model.eval()
|
| 63 |
+
|
| 64 |
+
# get model specific transforms (normalization, resize)
|
| 65 |
+
data_config = timm.data.resolve_model_data_config(model)
|
| 66 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
| 67 |
+
|
| 68 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
| 69 |
+
|
| 70 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
### Feature Map Extraction
|
| 74 |
+
```python
|
| 75 |
+
from urllib.request import urlopen
|
| 76 |
+
from PIL import Image
|
| 77 |
+
import timm
|
| 78 |
+
|
| 79 |
+
img = Image.open(urlopen(
|
| 80 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
| 81 |
+
))
|
| 82 |
+
|
| 83 |
+
model = timm.create_model(
|
| 84 |
+
'eca_halonext26ts.c1_in1k',
|
| 85 |
+
pretrained=True,
|
| 86 |
+
features_only=True,
|
| 87 |
+
)
|
| 88 |
+
model = model.eval()
|
| 89 |
+
|
| 90 |
+
# get model specific transforms (normalization, resize)
|
| 91 |
+
data_config = timm.data.resolve_model_data_config(model)
|
| 92 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
| 93 |
+
|
| 94 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
| 95 |
+
|
| 96 |
+
for o in output:
|
| 97 |
+
# print shape of each feature map in output
|
| 98 |
+
# e.g.:
|
| 99 |
+
# torch.Size([1, 64, 128, 128])
|
| 100 |
+
# torch.Size([1, 256, 64, 64])
|
| 101 |
+
# torch.Size([1, 512, 32, 32])
|
| 102 |
+
# torch.Size([1, 1024, 16, 16])
|
| 103 |
+
# torch.Size([1, 2048, 8, 8])
|
| 104 |
+
|
| 105 |
+
print(o.shape)
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
### Image Embeddings
|
| 109 |
+
```python
|
| 110 |
+
from urllib.request import urlopen
|
| 111 |
+
from PIL import Image
|
| 112 |
+
import timm
|
| 113 |
+
|
| 114 |
+
img = Image.open(urlopen(
|
| 115 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
| 116 |
+
))
|
| 117 |
+
|
| 118 |
+
model = timm.create_model(
|
| 119 |
+
'eca_halonext26ts.c1_in1k',
|
| 120 |
+
pretrained=True,
|
| 121 |
+
num_classes=0, # remove classifier nn.Linear
|
| 122 |
+
)
|
| 123 |
+
model = model.eval()
|
| 124 |
+
|
| 125 |
+
# get model specific transforms (normalization, resize)
|
| 126 |
+
data_config = timm.data.resolve_model_data_config(model)
|
| 127 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
| 128 |
+
|
| 129 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
| 130 |
+
|
| 131 |
+
# or equivalently (without needing to set num_classes=0)
|
| 132 |
+
|
| 133 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
| 134 |
+
# output is unpooled, a (1, 2048, 8, 8) shaped tensor
|
| 135 |
+
|
| 136 |
+
output = model.forward_head(output, pre_logits=True)
|
| 137 |
+
# output is a (1, num_features) shaped tensor
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
## Model Comparison
|
| 141 |
+
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|
| 142 |
+
|
| 143 |
+
## Citation
|
| 144 |
+
```bibtex
|
| 145 |
+
@misc{rw2019timm,
|
| 146 |
+
author = {Ross Wightman},
|
| 147 |
+
title = {PyTorch Image Models},
|
| 148 |
+
year = {2019},
|
| 149 |
+
publisher = {GitHub},
|
| 150 |
+
journal = {GitHub repository},
|
| 151 |
+
doi = {10.5281/zenodo.4414861},
|
| 152 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
| 153 |
+
}
|
| 154 |
+
```
|
| 155 |
+
```bibtex
|
| 156 |
+
@article{Vaswani2021ScalingLS,
|
| 157 |
+
title={Scaling Local Self-Attention for Parameter Efficient Visual Backbones},
|
| 158 |
+
author={Ashish Vaswani and Prajit Ramachandran and A. Srinivas and Niki Parmar and Blake A. Hechtman and Jonathon Shlens},
|
| 159 |
+
journal={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
| 160 |
+
year={2021},
|
| 161 |
+
pages={12889-12899}
|
| 162 |
+
}
|
| 163 |
+
```
|
| 164 |
+
```bibtex
|
| 165 |
+
@inproceedings{wightman2021resnet,
|
| 166 |
+
title={ResNet strikes back: An improved training procedure in timm},
|
| 167 |
+
author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
|
| 168 |
+
booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
|
| 169 |
+
}
|
| 170 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architecture": "eca_halonext26ts",
|
| 3 |
+
"num_classes": 1000,
|
| 4 |
+
"num_features": 2048,
|
| 5 |
+
"pretrained_cfg": {
|
| 6 |
+
"tag": "c1_in1k",
|
| 7 |
+
"custom_load": false,
|
| 8 |
+
"input_size": [
|
| 9 |
+
3,
|
| 10 |
+
256,
|
| 11 |
+
256
|
| 12 |
+
],
|
| 13 |
+
"min_input_size": [
|
| 14 |
+
3,
|
| 15 |
+
256,
|
| 16 |
+
256
|
| 17 |
+
],
|
| 18 |
+
"fixed_input_size": false,
|
| 19 |
+
"interpolation": "bicubic",
|
| 20 |
+
"crop_pct": 0.94,
|
| 21 |
+
"crop_mode": "center",
|
| 22 |
+
"mean": [
|
| 23 |
+
0.485,
|
| 24 |
+
0.456,
|
| 25 |
+
0.406
|
| 26 |
+
],
|
| 27 |
+
"std": [
|
| 28 |
+
0.229,
|
| 29 |
+
0.224,
|
| 30 |
+
0.225
|
| 31 |
+
],
|
| 32 |
+
"num_classes": 1000,
|
| 33 |
+
"pool_size": [
|
| 34 |
+
8,
|
| 35 |
+
8
|
| 36 |
+
],
|
| 37 |
+
"first_conv": "stem.conv1.conv",
|
| 38 |
+
"classifier": "head.fc"
|
| 39 |
+
}
|
| 40 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fde890a37e9ff41ecdee9607016585bb773814bd55cb3fad5cb898b899c90114
|
| 3 |
+
size 43171628
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:44593fd02e48aedd8db923548d9e6b7b92b156f69aaf29480a7a19c210ed089d
|
| 3 |
+
size 43224501
|