--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - tencent/Hunyuan-A13B-Instruct --- This tiny model is for debugging. It is randomly initialized with the config adapted from [tencent/Hunyuan-A13B-Instruct](https://huggingface.co/tencent/Hunyuan-A13B-Instruct). ### Example usage: ```python import os import re from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "tiny-random/hunyuan-moe" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) # You may want to use bfloat16 and/or move to GPU here model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) messages = [ {"role": "user", "content": "Write a short summary of the benefits of regular exercise"}, ] tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, return_tensors="pt", enable_thinking=True, # Toggle thinking mode (default: True) ) outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=32) output_text = tokenizer.decode(outputs[0]) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import torch import accelerate from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, set_seed, ) source_model_id = "tencent/Hunyuan-A13B-Instruct" save_folder = "/tmp/tiny-random/hunyuan-moe" processor = AutoTokenizer.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) hf_hub_download(source_model_id, filename='hy.tiktoken', repo_type='model', local_dir=save_folder, local_dir_use_symlinks=False) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json['attention_head_dim'] = 32 config_json['hidden_size'] = 64 config_json['intermediate_size'] = 128 config_json['moe_intermediate_size'] = [128, 128] config_json['moe_topk'] = [2, 2] config_json['num_attention_heads'] = 2 config_json['num_experts'] = 8 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 1 config_json['num_shared_expert'] = [1, 1] config_json['tie_word_embeddings'] = True with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) automap = config_json['auto_map'] torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.2) print(name, p.shape) model.save_pretrained(save_folder) print(model) with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: config_json = json.load(f) config_json['auto_map'] = automap with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) for python_file in Path(save_folder).glob('*.py'): if python_file.name.startswith('modeling_') or python_file.name.startswith('configuration_'): python_file.unlink() ``` ### Printing the model: ```text HunYuanMoEV1ForCausalLM( (model): HunYuanModel( (embed_tokens): Embedding(128167, 64, padding_idx=127961) (layers): ModuleList( (0-1): 2 x HunYuanDecoderLayer( (self_attn): HunYuanSdpaAttention( (q_proj): Linear(in_features=64, out_features=64, bias=False) (k_proj): Linear(in_features=64, out_features=32, bias=False) (v_proj): Linear(in_features=64, out_features=32, bias=False) (o_proj): Linear(in_features=64, out_features=64, bias=False) (query_layernorm): HunYuanRMSNorm() (key_layernorm): HunYuanRMSNorm() (rotary_emb): HunYuanDynamicNTKAlphaRotaryEmbedding() ) (mlp): HunYuanMoE( (shared_mlp): HunYuanMLP( (gate_proj): Linear(in_features=64, out_features=128, bias=False) (up_proj): Linear(in_features=64, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=64, bias=False) (act_fn): SiLU() ) (gate): HunYuanTopKGate( (wg): Linear(in_features=64, out_features=8, bias=False) ) (experts): ModuleList( (0-7): 8 x HunYuanMLP( (gate_proj): Linear(in_features=64, out_features=128, bias=False) (up_proj): Linear(in_features=64, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=64, bias=False) (act_fn): SiLU() ) ) ) (input_layernorm): HunYuanRMSNorm() (post_attention_layernorm): HunYuanRMSNorm() ) ) (norm): HunYuanRMSNorm() ) (lm_head): Linear(in_features=64, out_features=128167, bias=False) ) ```