--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This tiny model is for debugging. It is randomly initialized with the config adapted from [MiniMaxAI/MiniMax-M1-80k](https://huggingface.co/MiniMaxAI/MiniMax-M1-80k). ### Example usage: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "tiny-random/minimax-m1" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, trust_remote_code=True, ) pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True) print(pipe('Write an article about Artificial Intelligence.')) ``` ### Printing the model: ```text MiniMaxM1ForCausalLM( (model): MiniMaxM1Model( (embed_tokens): Embedding(200064, 64) (layers): ModuleList( (0): MiniMaxM1DecoderLayer( (self_attn): MiniMaxM1LightningAttention( (out_proj): Linear(in_features=64, out_features=64, bias=False) (norm): MiniMaxM1RMSNorm() (qkv_proj): Linear(in_features=64, out_features=192, bias=False) (output_gate): Linear(in_features=64, out_features=64, bias=False) ) (block_sparse_moe): MiniMaxM1SparseMoeBlock( (gate): Linear(in_features=64, out_features=8, bias=False) (experts): ModuleList( (0-7): 8 x MiniMaxM1BlockSparseTop2MLP( (w1): Linear(in_features=64, out_features=128, bias=False) (w2): Linear(in_features=128, out_features=64, bias=False) (w3): Linear(in_features=64, out_features=128, bias=False) (act_fn): SiLU() ) ) ) (input_layernorm): MiniMaxM1RMSNorm() (post_attention_layernorm): MiniMaxM1RMSNorm() ) (1): MiniMaxM1DecoderLayer( (self_attn): MiniMaxM1FlashAttention2( (q_proj): Linear(in_features=64, out_features=64, bias=False) (k_proj): Linear(in_features=64, out_features=32, bias=False) (v_proj): Linear(in_features=64, out_features=32, bias=False) (o_proj): Linear(in_features=64, out_features=64, bias=False) (rotary_emb): MiniMaxM1RotaryEmbedding() ) (block_sparse_moe): MiniMaxM1SparseMoeBlock( (gate): Linear(in_features=64, out_features=8, bias=False) (experts): ModuleList( (0-7): 8 x MiniMaxM1BlockSparseTop2MLP( (w1): Linear(in_features=64, out_features=128, bias=False) (w2): Linear(in_features=128, out_features=64, bias=False) (w3): Linear(in_features=64, out_features=128, bias=False) (act_fn): SiLU() ) ) ) (input_layernorm): MiniMaxM1RMSNorm() (post_attention_layernorm): MiniMaxM1RMSNorm() ) ) (norm): MiniMaxM1RMSNorm() ) (lm_head): Linear(in_features=64, out_features=200064, bias=False) ) ``` ### Codes to create this repo: ```python import json from pathlib import Path import torch import accelerate from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, set_seed, ) source_model_id = "MiniMaxAI/MiniMax-M1-80k" save_folder = "/tmp/tiny-random/minimax-m1" processor = AutoTokenizer.from_pretrained(source_model_id) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json["attn_type_list"] = [0, 1] # one lightning, one attention for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json['head_dim'] = 32 config_json['hidden_size'] = 64 config_json['intermediate_size'] = 128 config_json['num_attention_heads'] = 2 config_json['num_experts_per_tok'] = 2 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 1 config_json['num_local_experts'] = 8 config_json['rotary_dim'] = 16 config_json['tie_word_embeddings'] = True with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) automap = config_json['auto_map'] torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) # according to source model, gat is in FP32 for i in range(config.num_hidden_layers): model.model.layers[i].block_sparse_moe.gate.float() if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.2) print(name, p.shape) model.save_pretrained(save_folder) print(model) with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: config_json = json.load(f) config_json['auto_map'] = automap with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) for python_file in Path(save_folder).glob('*.py'): python_file.unlink() ```