File size: 92,818 Bytes
f655c13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:1332110
- loss:CachedMultipleNegativesRankingLoss
base_model: jhu-clsp/ettin-encoder-17m
widget:
- source_sentence: how to create a network drive in windows 8
sentences:
- '- 1 From your Windows 8 Start Menu (the one with all the tiles) click Desktop.
2 Right click the desktop and click personalize. 3 Click change desktop icons.
4 Check Computer and click apply. 5 If computer is already checked then you
can ignore this step. 6 Double click computer on the desktop.7 Click the map
network drive icon. From your Windows 8 Start Menu (the one with all the tiles)
click Desktop. 2 Right click the desktop and click personalize. 3 Click change
desktop icons. 4 Check Computer and click apply. 5 If computer is already checked
then you can ignore this step. 6 Double click computer on the desktop.'
- Change from Public to Private Network in Windows 7, 8 and 10 In Windows 8.1, to
change the network profile, we have to go into the PC Settings screen. To do that,
open the Charms bar and click on Change PC Settings at the bottom.or Windows 8,
follow the following procedure. First, right-click on the network icon in the
Windows 8 system tray and click on Open Network and Sharing Center. Here you will
see the network you are connected to and what type of network Windows 8 has identified
it as.
- '- Mapping a folder on a network creates a shared space that anyone on the network
can easily access. You can map a drive on another computer on your network to
increase the storage you have access to, or to create a collaboration space for
you and your coworkers. Follow this guide to turn any folder into a network drive.'
- '- 1 Log on to the Windows-based server by using an administrative level account.
2 Click Start, click Run, type cmd, and then click OK. 3 Type the following
command, and then press ENTER to share a folder to NFS clients and to allow anonymous
access: Start Windows Explorer. 2 Right-click the folder that you want to share,
and then click Sharing. 3 Click the NFS Sharing tab, and then click Share this
folder.'
- How to Add a Hard Drive to a Network How to Add a Hard Drive to a Network. By
Dan Gookin from Troubleshooting Your PC For Dummies, 3rd Edition. Putting a hard
drive up for grabs on the network is done primarily by sharing folders on your
computer with other computers on the network.
- Network Drive Network is primarily installed on the central /network/ storage
server in a local network. Typically, users access the network drive using local
drive access service from their computer. In most operating system, network drive
is displayed along with the locally installed drives.
- '- Granite has been used for the past 50-60 years as bench-top surfacing in kitchens.
Prior to that, most stone kitchen bench-tops were marble. With the ability to
choose from a huge variety of granite colors you are assured your countertop will
be an original.Granite is the most durable of all surfaces used in counter top
construction. When it comes to kitchen benchtops, normal use of kitchen knives,
cutlery, and cookware leaves no scratches.ith the ability to choose from a huge
variety of granite colors you are assured your countertop will be an original.
Granite is the most durable of all surfaces used in counter top construction.
When it comes to kitchen benchtops, normal use of kitchen knives, cutlery, and
cookware leaves no scratches.'
- 'Breastfeeding Frequency There are also wet diaper patterns: 1 Day 1 = one wet
diaper. 2 Day 2 = 2 wet diapers. 3 Day 3 = 3 wet diapers, and so on. 4 Day
6 and older = 6 to 8 wet diapers in a 24-hour period. (After your milk increases,
the urine will soak the diaper.) 5 Your baby''s urine is pale in color. 6 You
can hear your baby swallowing the milk.'
- source_sentence: what happens when something melts
sentences:
- '- Melting and Freezing. If solid matters gain enough heat they change state solid
to liquid. Heat is a form of energy and in this situation it is used for the break
the bonds of the atoms and molecules. Heated atoms and molecules vibrate more
quickly and break their bonds. We call this process melting changing state solid
to liquid.'
- '- The shape of the ice cream will change the melting time depending how it changes
the ratio of the area of the surface to the volume of the ice cream. The more
ice cream that is in immediate contact with air, the faster it will melt. A lower
surface area to volume ratio speeds melting because the air can share its heat
energy with more of the ice cream at one time. Imagine how much easier it is to
for an ice cream flake to melt than a ball of ice cream.'
- Kid Rock - Fat Bottom Girls chords G C Oh and give it all you got G D C Fat bottomed
girls You make the rockin ' world go round G D G Fat bottomed girls You make the
rockin ' world go round Hey listen here G Now your mortgages and homes , I got
stiffness in the bones D Ain't no beauty queens in this locality ( I tell you
) G Oh but I still get my pleasure C Still got my greatest ...
- '- Ice acts very similar to Snow in the sense that it melts when it comes into
contact with Fire, is near a Torch, or is touched by Lava for a short period of
time. Ice is not affected by Fire, but when melted with Lava, it will produce
Water. This will also happen if Ice is destroyed and there is a Block beneath
it.'
- Blog The science behind how salt works lies in something known as the freezing
point. Salt has a lower freezing point than water, which is why salt water does
not freeze as quickly as pure water. This lower freezing point is what enables
salt to melt ice and snow. When you spread salt on ice, it acts almost like a
molecular sponge. It draws some of the frozen water molecules to it and, because
of its lower freezing point, breaks the molecular bonds between them. These broken
molecular bonds cause the ice to melt, creating a brine that encourages further
melting.
- '- Design. Measuring in at 4.7 and 5.5-inches, the iPhone 6 and the iPhone 6 Plus
dwarf previous iPhone models, but at the same time, the two phones are Apple''s
thinnest yet, measuring in at 6.9 and 7.1mm, respectively. For comparison''s sake,
the iPhone 5s was 7.6mm thick.hat''s Next. The iPhone 6 and the iPhone 6 Plus
were followed by the iPhone 6s and the iPhone 6s Plus, which launched on September
25, 2015. More information on Apple''s latest iPhones can be found in our dedicated
iPhone 6s roundup.'
- What happens if someone stops dialysis? For many people with kidney failure, dialysis
or a kidney transplant enables them to live longer and enjoy their quality of
life. However, this may not be the case for everyone and each person has the right
to choose how — or even if — they want to receive treatment for chronic kidney
disease.hat to expect once dialysis is stopped. Without dialysis, toxins build
up in the blood, causing a condition called uremia. The patient will receive whatever
medicines are necessary to manage symptoms of uremia and other medical conditions.
- 'What happens to rocks when they are heated? Rating Newest Oldest. Best Answer:
You heat it, it gets bigger. You heat it too fast, it will crack and break. You
heat it slowly within the earth''s crust, and subject it to pressure, the crystals
within it will relign and it will metamorphose. You heat it strongly enough, and
it will melt and becomne magma.'
- source_sentence: what is an archipelago?
sentences:
- '- Save. Hardening steel with motor oil is a way of performing what is called
the case hardening of steel. Pure steel is actually too soft for many applications.
In order to put a hard layer on the steel, carbon must be fused at the molecular
level into the top centimeter or so of the steel.'
- '- An archipelago is a group, chain or cluster of islands surrounded by a large
body of water, usually the open sea. + 85 others found this useful. Ben Ward.
Edit. Share to: Bayley Dole. 1,609 Contributions. Avid reader of American History
books, previous AP Government and AP US History student. Getting to Know Micronesia
Micronesia is an archipelago that consists of 607 islands. 2 First colonized
by Spain in the 17th century, the archipelago was ruled by multiple countries
before ending up unde….'
- Island An island is an area of land smaller than a continent and entirely surrounded
by water. Islands range from single rocks to huge landmasses, such as the island
of Greenland. There are two main types of island—continental islands and oceanic
islands. Islands are also found in rivers and lakes.
- Malta (island) Malta is the largest of the three major islands that constitute
the Maltese archipelago. It is sometimes referred to as Valletta for statistical
purposes to distinguish the main island from the entire country. Malta is in the
middle of the Mediterranean Sea directly south of Italy and north of Libya.The
island is 27 kilometres (17 mi) long and 14.5 kilometres (9 mi) wide, with a total
area of 246 square kilometres (95 sq mi).The capital is Valletta, largest city
is Qormi and the largest locality is Birkirkara.alta is the largest of the three
major islands that constitute the Maltese archipelago. It is sometimes referred
to as Valletta for statistical purposes to distinguish the main island from the
entire country. Malta is in the middle of the Mediterranean Sea directly south
of Italy and north of Libya.
- Overview The Seychelles is synonymous with the world’s most beautiful islands!
This archipelago is made up of over a hundred islands, each one different from
the next, in the perfect azure of the Indian Ocean.
- About the Galapagos Islands The Galapagos Archipelago is a cluster of some 13
volcanic islands and associated islets and rocks located just under the equator,
about 600 miles (1000km) west of Ecuador in South America.
- Heroin Heroin is a depressant drug, which means it slows down the messages travelling
between your brain and body. Heroin belongs to a group of drugs known as ‘opioids’
that are from the opium poppy. 1.
- '- The Maldives, an Islamic Republic, is an archipelago of 1,191 islands in the
Indian Ocean. Its culture is a blend of influences from southern India, Sri Lanka,
East Africa and Arab countries.'
- source_sentence: enteroaggregative escherichia coli definition
sentences:
- 5 Things You Need to Know About a Sudden Drop in Blood Pressure Rapid Changes
in Health Can Cause an Acute Drop in Blood Pressure. Certain medical conditions
can cause an acute drop in blood pressure. Blood loss from either an external
injury or internal bleeding, for instance, will cause a drop in blood pressure.
Excessive blood loss during menstruation could also be a cause.
- Footloose (RAH) Footloose had it all. Highly intelligent valedictorian in high
school, track team captain, gone to university on a state scholarship, an upbeat
life anyone can be envious of. For some inexplicable reason, the man just went
off the public radar, leaving his past and achievements.
- E. coli E. coli. E. coli (Escherichia coli), species of bacterium that normally
inhabits the stomach and intestines. When E. coli is consumed in contaminated
water, milk, or food or is transmitted through the bite of a fly or other insect,
it can cause gastrointestinal illness.
- 'Escherichia coli Escherichia coli (IPA: [ˌɛ.ʃəˈɹɪ.kjə ˈkʰoʊ.laɪ]), is one of
the well known and significant species of bacteria living as gut fauna in the
lower intestines of mammals. The number of individual E. coli bacteria in the
feces that a human excretes in one day averages between 100 billion and 10 trillion.'
- Enterotoxigenic E. coli (ETEC) Enterotoxigenic E. coli (ETEC) Enterotoxigenic
Escherichia coli (E. coli), or ETEC, is an important cause of bacterial diarrheal
illness. Infection with ETEC is the leading cause of travelers' diarrhea and a
major cause of diarrheal disease in lower-income countries, especially among children.
- Escherichia coli noun, Bacteriology. 1. a species of rod-shaped, facultatively
anaerobic bacteria in the large intestine of humans and other animals, sometimes
pathogenic. Origin of Escherichia coli Expand. < New Latin, named after T. Escherich
(died 1911), German physician; see -ia.
- Preface Enteroaggregative Escherichia coli (EAEC), an increasingly recognized
cause of diarrhea in children in developing countries, has been particularly associated
with persistent diarrhea (more than 14 days), a major cause of illness and death.
- E.coli (Escherichia coli) Escherichia coli (abbreviated as E. coli) are bacteria
found in the environment, foods, and intestines of people and animals.E. coli
are a large and diverse group of bacteria. Although most strains of E. coli are
harmless, others can make you sick.Some kinds of E. coli can cause diarrhea, while
others cause urinary tract infections, respiratory illness and pneumonia, and
other illnesses. More ».Learn about multistate outbreaks of E. coli.scherichia
coli (abbreviated as E. coli) are bacteria found in the environment, foods, and
intestines of people and animals.
- source_sentence: who is the president united states today
sentences:
- 'Modes of Transmission Bloodborne pathogens such as HBV and HIV can be transmitted
through contact with infected human blood and other potentially infectious body
fluids such as: Semen Vaginal secretions Cerebrospinal fluid Synovial fluid Pleural
fluid Peritoneal fluid Amniotic fluid Saliva (in dental procedures), and Any body
fluid that is visibly contaminated with blood. It is important to know the ways
exposure and transmission are most likely to occur in your particular situation,
be it providing first aid to a student in the classroom, handling blood samples
in the laboratory, or cleaning up blood from a hallway.'
- Barack Obama Barack Obama, Democrat, (born August 4, 1961 in Honolulu, Hawaii)
officially became the forty-fourth President of the United States, on January
20, 2009 and was re-electe … d for a second term on November 6, 2012. Barack
Obama became president of the United States of America in 2009 and is the current
president. Before he became president there was George W. Bush and Bill Clinton.
- Presidents Barack Hussein Obama II (US /bəˈrɑːk huːˈseɪn oʊˈbɑːmə/; born August
4, 1961) is an American politician who is the 44th and current President of the
United States. He is the first African American to hold the office and the first
president born outside the continental United States. Born in Honolulu, Hawaii,
Obama is a graduate of Columbia University and Harvard Law School, where he was
president of the Harvard Law Review. He was a community organizer in Chicago before
earning his law degree.
- '- In The News Today. 1 Donald Trump hosted Sarah Palin, Kid Rock, and Ted Nugent
at the White House. 2 Marine Le Pen has embraced being a woman, and that might
just help her become the next big far-right world leader 3 🇫🇷. FYI: If you''ve
agreed to Uber''s terms of service you''ve signed away the right to sue the company
😬 🚕.'
- '- It’s Labor Day, 2020. President Donald Trump is nearing the end of his first
term in the White House — and getting ready for the final sprint in his re-election
campaign.'
- Carbon dioxide Carbon dioxide is produced during the processes of decay of organic
materials and the fermentation of sugars in bread, beer and winemaking. It is
produced by combustion of wood and other organic materials and fossil fuels such
as coal, peat, petroleum and natural gas.
- '- 1 Pope Francis will address the United Nations'' biggest gathering of world
leaders today. 2 Yesterday, he delivered a historic speech to the U.S. Congress.
›. 3 With a possible government shutdown looming, the U.S. Senate blocked an
effort by Republicans to deny federal funding for Planned Parenthood. Pope Francis
will address the United Nations'' biggest gathering of world leaders today. 2 Yesterday,
he delivered a historic speech to the U.S. Congress. ›. 3 With a possible government
shutdown looming, the U.S. Senate blocked an effort by Republicans to deny federal
funding for Planned Parenthood.'
- '- Abraham Lincoln (12 February 1809 - 15 April 1865) was the 16th President of
the United States.'
datasets:
- mixedbread-ai/rlhn-680k-msmarco-7negs-scored
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
emissions: 41.76368695617693
energy_consumed: 0.156054759908292
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.794
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: jhu-clsp/ettin-encoder-17m trained on RLHN MS MARCO using cmnrl
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.22
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.52
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.64
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.22
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10400000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.064
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.22
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.52
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.64
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.41264403293661234
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.34149206349206346
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3591274789371428
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: cosine_accuracy@1
value: 0.3
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.46
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.22666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.156
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.007796302222821822
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.01980804838125997
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.03461116468772874
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.045785191165931556
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18317312912843284
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.35538888888888887
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.051374407713498646
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.24
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.34
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.36
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.46
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.24
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07200000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05000000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.22
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.31
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.33
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.44
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.31950539918792653
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.29594444444444445
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.29368337934177885
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.25333333333333335
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3666666666666667
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4466666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5333333333333333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.25333333333333335
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15777777777777777
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12533333333333335
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09000000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.14926543407427395
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.24326934946042
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.29487038822924294
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.37526173038864385
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.30510752041765726
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3309417989417989
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.23472842199747346
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: rlhn msmarco eval
type: rlhn-msmarco-eval
metrics:
- type: cosine_accuracy@1
value: 0.36466666666666664
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.531
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6013333333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.686
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.36466666666666664
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.177
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12026666666666665
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0686
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.36466666666666664
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.531
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6013333333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.686
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5178156881433742
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4647850529100526
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4730633839153687
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: rlhn msmarco test
type: rlhn-msmarco-test
metrics:
- type: cosine_accuracy@1
value: 0.2928
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4698
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5568
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6617
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2928
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1566
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11135999999999999
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06616999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2928
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4698
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5568
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6617
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.46596220097347807
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4046276587301606
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4133624239973121
name: Cosine Map@100
---
# jhu-clsp/ettin-encoder-17m trained on RLHN MS MARCO using cmnrl
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) on the [rlhn-680k-msmarco-7negs-scored](https://huggingface.co/datasets/mixedbread-ai/rlhn-680k-msmarco-7negs-scored) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) <!-- at revision 987607455c61e7a5bbc85f7758e0512ea6d0ae4c -->
- **Maximum Sequence Length:** 7999 tokens
- **Output Dimensionality:** 256 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [rlhn-680k-msmarco-7negs-scored](https://huggingface.co/datasets/mixedbread-ai/rlhn-680k-msmarco-7negs-scored)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 7999, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/ettin-encoder-17m-cmnrl-lr2e-05-bs128")
# Run inference
queries = [
"who is the president united states today",
]
documents = [
'- It’s Labor Day, 2020. President Donald Trump is nearing the end of his first term in the White House — and getting ready for the final sprint in his re-election campaign.',
'- Abraham Lincoln (12 February 1809 - 15 April 1865) was the 16th President of the United States.',
'Barack Obama Barack Obama, Democrat, (born August 4, 1961 in Honolulu, Hawaii) officially became the forty-fourth President of the United States, on January 20, 2009 and was re-electe … d for a second term on November 6, 2012. Barack Obama became president of the United States of America in 2009 and is the current president. Before he became president there was George W. Bush and Bill Clinton.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 256] [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.4806, 0.6329, 0.7192]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"query_prompt": "query: ",
"corpus_prompt": "document: "
}
```
| Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
|:--------------------|:------------|:-------------|:-----------|
| cosine_accuracy@1 | 0.22 | 0.3 | 0.24 |
| cosine_accuracy@3 | 0.4 | 0.36 | 0.34 |
| cosine_accuracy@5 | 0.52 | 0.46 | 0.36 |
| cosine_accuracy@10 | 0.64 | 0.5 | 0.46 |
| cosine_precision@1 | 0.22 | 0.3 | 0.24 |
| cosine_precision@3 | 0.1333 | 0.2267 | 0.1133 |
| cosine_precision@5 | 0.104 | 0.2 | 0.072 |
| cosine_precision@10 | 0.064 | 0.156 | 0.05 |
| cosine_recall@1 | 0.22 | 0.0078 | 0.22 |
| cosine_recall@3 | 0.4 | 0.0198 | 0.31 |
| cosine_recall@5 | 0.52 | 0.0346 | 0.33 |
| cosine_recall@10 | 0.64 | 0.0458 | 0.44 |
| **cosine_ndcg@10** | **0.4126** | **0.1832** | **0.3195** |
| cosine_mrr@10 | 0.3415 | 0.3554 | 0.2959 |
| cosine_map@100 | 0.3591 | 0.0514 | 0.2937 |
#### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"query_prompts": {
"msmarco": "query: ",
"nfcorpus": "query: ",
"nq": "query: "
},
"corpus_prompts": {
"msmarco": "document: ",
"nfcorpus": "document: ",
"nq": "document: "
}
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2533 |
| cosine_accuracy@3 | 0.3667 |
| cosine_accuracy@5 | 0.4467 |
| cosine_accuracy@10 | 0.5333 |
| cosine_precision@1 | 0.2533 |
| cosine_precision@3 | 0.1578 |
| cosine_precision@5 | 0.1253 |
| cosine_precision@10 | 0.09 |
| cosine_recall@1 | 0.1493 |
| cosine_recall@3 | 0.2433 |
| cosine_recall@5 | 0.2949 |
| cosine_recall@10 | 0.3753 |
| **cosine_ndcg@10** | **0.3051** |
| cosine_mrr@10 | 0.3309 |
| cosine_map@100 | 0.2347 |
#### Information Retrieval
* Datasets: `rlhn-msmarco-eval` and `rlhn-msmarco-test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"query_prompt_name": "query",
"corpus_prompt_name": "document"
}
```
| Metric | rlhn-msmarco-eval | rlhn-msmarco-test |
|:--------------------|:------------------|:------------------|
| cosine_accuracy@1 | 0.3647 | 0.2928 |
| cosine_accuracy@3 | 0.531 | 0.4698 |
| cosine_accuracy@5 | 0.6013 | 0.5568 |
| cosine_accuracy@10 | 0.686 | 0.6617 |
| cosine_precision@1 | 0.3647 | 0.2928 |
| cosine_precision@3 | 0.177 | 0.1566 |
| cosine_precision@5 | 0.1203 | 0.1114 |
| cosine_precision@10 | 0.0686 | 0.0662 |
| cosine_recall@1 | 0.3647 | 0.2928 |
| cosine_recall@3 | 0.531 | 0.4698 |
| cosine_recall@5 | 0.6013 | 0.5568 |
| cosine_recall@10 | 0.686 | 0.6617 |
| **cosine_ndcg@10** | **0.5178** | **0.466** |
| cosine_mrr@10 | 0.4648 | 0.4046 |
| cosine_map@100 | 0.4731 | 0.4134 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### rlhn-680k-msmarco-7negs-scored
* Dataset: [rlhn-680k-msmarco-7negs-scored](https://huggingface.co/datasets/mixedbread-ai/rlhn-680k-msmarco-7negs-scored) at [88f1f50](https://huggingface.co/datasets/mixedbread-ai/rlhn-680k-msmarco-7negs-scored/tree/88f1f507bd615f11b802dc67e67bfb8af3ad0f5a)
* Size: 1,332,110 training samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, <code>negative_5</code>, <code>negative_6</code>, <code>negative_7</code>, and <code>scores</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 | negative_6 | negative_7 | scores |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------|
| type | string | string | string | string | string | string | string | string | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.12 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 90.52 tokens</li><li>max: 274 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 85.33 tokens</li><li>max: 208 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 83.66 tokens</li><li>max: 226 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 84.67 tokens</li><li>max: 258 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 82.88 tokens</li><li>max: 208 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 83.68 tokens</li><li>max: 288 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 82.63 tokens</li><li>max: 207 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 83.97 tokens</li><li>max: 223 tokens</li></ul> | <ul><li>size: 8 elements</li></ul> |
* Samples:
| query | positive | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 | negative_6 | negative_7 | scores |
|:--------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
| <code>is formaldehyde water soluble</code> | <code>Why is formaldehyde a good preservative? Formaldehyde is a cheap preservative that mixes easily with water but will not mix with oil or grease, so it is fairly common to find it in watery concoctions like shampoo, conditioner, shower gel, liquid hand wash and even children's bubble bath.</code> | <code>Facts About Formaldehyde Formaldehyde is found in: 1 Resins used in the manufacture of composite wood products (i.e., hardwood plywood, particleboard and medium-density fiberboard) 2 Building materials and insulation. 3 Household products such as glues, permanent press fabrics, paints and coatings, lacquers and finishes, and paper products.</code> | <code>Tosylamide/Formaldehyde Resin Tosylamide/Formaldehyde Resin is used in nail enamel products. It is a soft resin material which, in conjunction with nitrocellulose, forms tough, shiny and durable films on nails.osylamide/Formaldehyde Resin is a synthetic resin, sometimes called Toluenesulfonamide/Formaldehyde Resin. It modifies the film-forming characteristics of Nitrocellulose type polymers.</code> | <code>- Formaldehyde is a colorless gas with a rather strong odor, made up of a carbon atom, two hydrogen atoms and an atom of oxygen, CH2O. It has very potent antibacterial and antifungal properties. Many textile industries use formaldehyde in their production processes.</code> | <code>Formaldehyde Formaldehyde (systematic name methanal), is a naturally occurring organic compound with the formula CH 2 O (H-CHO). It is the simplest of the aldehydes (R-CHO). The common name of this substance comes from its similarity and relation to formic acid. Formaldehyde is an important precursor to many other materials and chemical compounds.</code> | <code>Dissolving tetracycline in water? Well though I have no experience with your compound, however, whenever we had to dissolve non-polar in water we dissolved the compound in a very little amount of compatible solvent (eg acetone, alcohol etc) thereafter, it become miscible in water. ... ·. Hello! Thanks everyone for the answers.</code> | <code>PowerEdge VRTX CMC Licensing Details PowerEdge VRTX CMC Licensing Details. As I noted in my original posting of the PowerEdge VRTX, the Chassis Management Controller, or CMC, is available with an “Express” license and an “Enterprise” license. To help you determine which would be best suited for your environment, check out the chart below.</code> | <code>- About Poe's Short Stories. These stories represent the highest achievements in the literary genre of the gothic horror story. By gothic, one means that the author emphasizes the grotesque, the mysterious, the desolate, the horrible, the ghostly, and, ultimately, the abject fear that can be aroused in either the reader or in the viewer.</code> | <code>[0.7772998508568416, 0.0010420335130684381, 0.004322105866822573, 0.06008664344151498, 0.07159119944455247, ...]</code> |
| <code>what presidents replaced assassinated presidents</code> | <code>Which four presidents of the United States were assassinated? There have been eighteen attempts to kill sitting and former United States Presidents and Presidents-Elect. Four attempts on sitting Presidents have succeeded; the 16th, 20th, 25th and 35th US Presidents were all assassinated in office, and two others were injured. Successful assassinations: 1 -- Abraham Lincoln.</code> | <code>- Register Now. 1 Solution Finder Answers to your top questions about your Ford. 2 Post a comment Find support among your fellow driver. 3 Live chat Get one-on-one support right now. Call for support Speak to a Ford 1 representative. Find a dealer Find a Ford dealership in your area.</code> | <code>Who Knew? U.S. Presidential Trivia Assassination and Death. Four sitting Presidents have been assassinated while in office: Abraham Lincoln, James Abram Garfield (1881), William McKinley (1897-1901), and John F. Kennedy (1961-63).</code> | <code>- Prince Y Johnson is better known as the man who presided over the torture and assassination of the then Liberian President, Samuel Doe, in September of 1990. Even by the standards of the time it was a particularly brutal slaying. Before he was killed, Doe was mutilated, his ears sliced off.</code> | <code>Who was the first vice president to take presidency after a death? John Tyler was the first Vice-President to take over after the death of a sitting President. William Henry Harrison was sworn in as President on March 4, 1841.</code> | <code>How Is a New Vice President Chosen? Advertisement. The 25th Amendment, ratified in 1967, solved the problem of how to replace a vice president. If Cheney resigned, President Bush would select a nominee for the vice presidency. Then the nominee would have to be approved by majority votes in both the House and the Senate.</code> | <code>Campylobacteriosis - Causes and Symptoms Some persons who are infected with Campylobacter don't have any symptoms at all. In persons with compromised immune systems, Campylobacter occasionally spreads to the bloodstream and causes a serious life-threatening infection.</code> | <code>- Dotplot Overview. As you might guess, a dotplot is made up of dots plotted on a graph. Here is how to interpret a dotplot. 1 Each dot represents a specific number of observations from a set of data. ( 2 Unless otherwise indicated, assume that each dot represents one observation.</code> | <code>[0.34864513533394575, 0.000999042306106755, 0.679178699175393, 0.003032753157394305, 0.01495708659314999, ...]</code> |
| <code>what military base is the largest in the us</code> | <code>What are the 10 largest U.S. military bases? , Proficient in the use of Google. The top 5 largest military bases in the world belong to the US. sorry for only being able to find the information on 5 bases. 1. Fort Bragg (population 238,646 & 163,000 acres. 2. Fort Campbell (population 234,914 & 105,000 acres) 3. Fort Hood (population 217,003 & 214,968 acres)</code> | <code>What Are Some of the Largest Marine Corps Bases? Southern California's Camp Pendleton, which spans more than 125,000 acres, is the Marine Corps' largest expeditionary training facility on the West Coast. Camp Lejeune, situated on approximately 156,000 acres including about 11 miles of beach, is the Marine Corps' largest East Coast base. The base houses several training schools and is home for about 47,000 sailors and Marines who belong to the II Marine Expeditionary Force, an air and ground task force.</code> | <code>The List: The Six Most Important U.S. Military Bases The best part: unlike other large bases in the region, Guam is U.S. territory. Balad Air Base/Camp Anaconda, Iraq. The base: Most prominent of the enduring bases being constructed in Iraq, Balad is located just north of Baghdad. It is one of the busiest airfields in the country, accommodating both Air Force fighters as well as transport aircraft.</code> | <code>What Are Some of the Largest Marine Corps Bases? A: America's largest Marine Corps bases include North Carolina's Marine Corps Base Camp Lejeune, and California's Marine Corps Air Ground Combat Center Twentynine Palms and Marine Corps Base Camp Pendleton. Commissioned during the Korean War in 1952, Twentynine Palms, the largest Marine Corps base in the world, exceeds 998 square miles.</code> | <code>Seeing shared threats, Turkey sets up military base in Qatar One of the world's wealthiest countries, Qatar is home to the largest U.S. air base in the Middle East, Al Udeid, where around 10,000 military personnel are stationed. (Reporting by Tom Finn; Editing by Mark Trevelyan)</code> | <code>Fort Hood: The largest US military base in the world Fort Hood is the largest active-duty, armoured US military base in the world and at the time of the shooting housed around 65,000 people. Sgt. Fanuaee Vea embraces Pvt. Savannah Green while trying to reach friends and family outside Fort Hood, Texas Photo: GETTY. 7:00AM GMT 06 Nov 2009.</code> | <code>- Age. Standard Age-Most Soldiers who have been issued a NOE will become eligible for retired pay upon their 60th birthday. Service beyond age 60 - Soldiers remaining in an active status with the ARNG beyond the age of 60 will become eligible upon receipt of NOE and transfer to the retired reserve.on-regular retirement is the term used for ARNG and USAR Soldiers that have completed 20 or more years of qualifying service for retired pay upon reaching age 60 or, in some cases, sooner depending on their computed eligibility date.</code> | <code>Can I Use Bluetooth Headphones with a Bluetooth A/V Receiver? They Don't Pair! RF-based wireless headphones typically have a pair of RCA jacks as input. Sometimes they'll have a standard 3.5mm (1/8) headphone jack instead. In either case, you can connect the receiver's headphone out jack to the wireless headphone transmitter and that will transmit sound to the wireless headphones.</code> | <code>[0.880797071719777, 0.754914975839675, 0.4378235137849365, 0.8519527944504226, 0.5312093733737563, ...]</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 16,
"gather_across_devices": false
}
```
### Evaluation Dataset
#### rlhn-680k-msmarco-7negs-scored
* Dataset: [rlhn-680k-msmarco-7negs-scored](https://huggingface.co/datasets/mixedbread-ai/rlhn-680k-msmarco-7negs-scored) at [88f1f50](https://huggingface.co/datasets/mixedbread-ai/rlhn-680k-msmarco-7negs-scored/tree/88f1f507bd615f11b802dc67e67bfb8af3ad0f5a)
* Size: 3,000 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, <code>negative_5</code>, <code>negative_6</code>, <code>negative_7</code>, and <code>scores</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 | negative_6 | negative_7 | scores |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------|
| type | string | string | string | string | string | string | string | string | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.17 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 88.94 tokens</li><li>max: 216 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 86.2 tokens</li><li>max: 213 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 86.38 tokens</li><li>max: 237 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 85.61 tokens</li><li>max: 228 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 83.72 tokens</li><li>max: 234 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 85.51 tokens</li><li>max: 510 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 83.5 tokens</li><li>max: 197 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 85.41 tokens</li><li>max: 207 tokens</li></ul> | <ul><li>size: 8 elements</li></ul> |
* Samples:
| query | positive | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 | negative_6 | negative_7 | scores |
|:------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
| <code>benefit payments pensions</code> | <code>Benefit Payments and Direct Deposit Benefit Payments and Direct Deposit. When your pension begins, you receive a benefit payment each month (unless you receive a mandatory cash-out payment or you have elected a voluntary cash-out of your benefit). You can elect payment by mail or through electronic direct deposit. We encourage benefit recipients to sign up for direct deposit.</code> | <code>Defined benefit pension plan Defined benefit pension plan. A defined benefit pension plan is a type of pension plan in which an employer/sponsor promises a specified monthly benefit on retirement that is predetermined by a formula based on the employee's earnings history, tenure of service and age, rather than depending directly on individual investment returns.</code> | <code>Your Pension and Social Security Benefits Pension plans are offered and maintained by both private- and public-sector employers. You, and many other retirees, may collect both Social Security benefits and a monthly pension check. Receiving a pension doesn't automatically reduce your Social Security benefits. The key factor in determining whether your Social Security benefits will be affected by your pension is whether you receive a pension from government or other non-covered work. Receiving a Private Pension</code> | <code>State Pension (United Kingdom) The State Pension is a contribution-based benefit, and depends on an individual's National Insurance (NI) contribution history. For someone with the 30 qualifying years (years in which NI contributions were paid), it is payable at a flat rate of £119.30 a week (up to April 2016). 35 years contribution is needed to get the full new state pension from 6 April 2016. A smaller, pro-rata, pension is paid to someone with fewer qualifying years.</code> | <code>Canada Pension Plan Survivor Benefits Survivor’s Pension. The survivor’s pension is a monthly amount paid to the deceased’s spouse or common-law partner. This amount is entered on line 114. For children or spouses to be eligible to receive survivor’s benefits, the deceased contributor must have made contributions for a minimum of three years.</code> | <code>Inflation link on final salary pensions faces axe Rip-off pensions: Charges 'to be capped at 0.75pc'. The proposal for final salary schemes, dubbed flexible defined benefits aims to transfer more risk to savers by removing the requirement for schemes to increase pension payments in line with inflation, known as indexation.Employers would still provide a set level of income in retirement however.he proposal for final salary schemes, dubbed flexible defined benefits aims to transfer more risk to savers by removing the requirement for schemes to increase pension payments in line with inflation, known as indexation. Employers would still provide a set level of income in retirement however.</code> | <code>- Automated Clearing House (ACH) is an electronic network for financial transactions in the United States. ACH processes large volumes of credit and debit transactions in batches.ACH credit transfers include direct deposit, payroll and vendor payments.CH is a computer-based clearing and settlement facility established to process the exchange of electronic transactions between participating depository institutions. Rules and regulations that govern the ACH network are established by NACHA and the Federal Reserve.</code> | <code>- The saturated vapor of inorganic compounds that evaporate in the temperature range 700–3000 K generally contains species formed by the dissociation of the base compound and a number of associates. Many interesting and unexpected examples can be found in the extensive database on the species in inorganic vapors.</code> | <code>[0.9706877722165251, 0.754914975839675, 0.5312093585306514, 0.6513548511303336, 0.0953494648991095, ...]</code> |
| <code>how big a macaw can get</code> | <code>Macaw Care The largest Macaw, and also the largest of all parrots, is the impressive Hyacinth Macaw at 36 in length with a wingspan of up to 42, and weighing up to 1550 grams. The smallest of the macaws is the Hahn's Macaw, reaching not quite 12 (30 cm) in length. Types of Macaws.</code> | <code>How big can a bobcat get? I have seen bobcats as much as 47.3 pounds where I live, which is in Virginia. A cat this big will exceed 4 feet in length and a foot or so at the shoulder. There is some vari…ation among the dozen subspecies. A link can be found below.</code> | <code>How long Do Parrots Live â Lifespan of Parrots Macaws are by far one of the longest living parrots. They have a lifespan of about 80 – 90 years. Some have even lived up to 100 years. Macaws are found in South America, Mexico, and Caribbean. Now you can well imagine how long do parrots live!</code> | <code>Scarlet macaw Scarlet macaw. The scarlet macaw (Ara macao) is a large red, yellow, and blue South American parrot, a member of a large group of Neotropical parrots called macaws. It is native to humid evergreen forests of tropical South America.</code> | <code>How Long Can a Large Parrot Live? Since they are the largest parrots, macaws also have the longest life expectancies. If a young macaw joins your family, it probably will outlive you, as healthy macaws can survive 60 to 80 years. Even the smaller macaws, like the Hahns macaw, can live up 60 years. If you want to spend your life with a colorful, feathered friend, a macaw might be a good choice.</code> | <code>HOW BIG CAN PARROTS GET? They grow fairly quickly (not. They grow fairly quickly (not nearly as quickly as most other big cichlids) for the first 2-3 years, but once they hit 3-5 their growth rate plummets. They usually top out under 8 but the parrots that lean more toward KK parrots can reach that size or even larger.</code> | <code>What is a badminton racquet made of? a badminton raquet is the peice of eqiupment that people (that are playing badmintom) use to hit the birdie/shuttlecock. - Chow. badminton racquet sizes is never over the size of 680mm in height and 230mm in width.</code> | <code>Big Rapids, Michigan Population: Census 2010 and 2000 Interactive Map, Demographics, Statistics, Quick Facts Population by Hispanic or Latino Origin (of any race), 2000 Census-Grand Rapids, Michigan.</code> | <code>[0.977022627413796, 0.004345778821719373, 0.1329642264548166, 0.08035747763179142, 0.7772998508568416, ...]</code> |
| <code>boundary waters canoe area wilderness fur post</code> | <code>Boundary Waters Canoe Area Wilderness (Reservations), MN The Boundary Waters Canoe Area Wilderness (BWCAW) is located in the northern third of the Superior National Forest in northeastern Minnesota. Approximately 1.1 million acres in size, it extends nearly 150 miles along the international boundary adjacent to Canada's Quetico Provincial Park and is bordered on the west by Voyageurs National Park.</code> | <code>ZipRider® Icy Strait Point, Alaska The typical ride takes 1 ½ minutes and concludes on the beach at Icy Strait. Icy Strait Point is a cruise line port of call, located on the Chichagof Island, 1.5 miles away from the town of Hoonah, Alaska. Chichagof Island is located 50 miles west of Juneau. The Icy Strait Point ZipRider® opened in May of 2007 and has been the anchor attraction for Icy Strait Point ever since. People come from all over the country and world to experience the world renowned Icy Strait Point ZipRider® adventure and adrenaline rush!</code> | <code>Fort Wilderness Resort and Campground Fact Sheet In fact, Fort Wilderness is the only pet friendly resort on Disney World property. Request a pet site when making reservations. Pets are allowed in Premium, Preferred and Full Hook-Up campsites in loops 1600 through 1900, 300, 700 and 800, but must be kept in those areas.</code> | <code>- 357 Redhawk. This is a discussion on 357 Redhawk within the Ruger Double Action forums, part of the Pistol & Revolver Forum category; Hello all. New here and have a few questions. I have searched the forums and learned alot, but still have a few.</code> | <code>Cirque Lake - Banff National Park - Hiking Alberta Rockfall to the shore of Cirque Lake above Waterfowl Lakes Campground along Icefields Parkway in Banff National Park, Alberta, Canada. Unlimited opportunities for artistic photographs at Cirque Lake above Waterfowl Lakes Campground along Icefields Parkway in Banff National Park, Alberta, Canada.</code> | <code>- Friends of the Boundary Waters Wilderness. Urgent action is needed to curb the effects of human activity on our planet's climate and prepare for impacts of #climatechange. Ignoring climate change will endanger millions of lives and livelihoods across the planet as well as threaten national security, the economy, and of course the environment.</code> | <code>Commonwealth of Independent States The Commonwealth of Independent States (CIS) is the international organization, or alliance of countries that used to form the Soviet Union. On December 8 1991, leaders of Russia, Belarus, and Ukraine met at the nature reserve called Belovezhskaya Pushcha in Belarus. They discussed the creation of the Commonwealth of Independent States (CIS). They reached an agreement about many points and signed a document creating the CIS. One of these points stated that the alliance would be open to all the republics of the Soviet Union.</code> | <code>- It could cost less than $20 for something that can be buffed out. $40 for a mediocre touch up job (or $10 for one you can do yourself), up to $500 to repaint and blend a complete bumper, even more on a luxury car where exact paint matches may be hard to find and expensive.</code> | <code>[0.9626731094431571, 0.001340751940071589, 0.0029596639358424365, 0.0013305401297137621, 0.0018691848506214679, ...]</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 16,
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 0.05
- `warmup_ratio`: 0.1
- `bf16`: True
- `prompts`: {'query': 'query', 'positive': 'document', 'negative_1': 'document', 'negative_2': 'document', 'negative_3': 'document', 'negative_4': 'document', 'negative_5': 'document', 'negative_6': 'document', 'negative_7': 'document'}
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 0.05
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: {'query': 'query', 'positive': 'document', 'negative_1': 'document', 'negative_2': 'document', 'negative_3': 'document', 'negative_4': 'document', 'negative_5': 'document', 'negative_6': 'document', 'negative_7': 'document'}
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 | rlhn-msmarco-eval_cosine_ndcg@10 | rlhn-msmarco-test_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:--------------------------:|:---------------------------:|:---------------------:|:----------------------------:|:--------------------------------:|:--------------------------------:|
| 0.0096 | 100 | 5.1901 | - | - | - | - | - | - | - |
| 0.0101 | 105 | - | 2.4238 | 0.3045 | 0.1696 | 0.2506 | 0.2416 | 0.4009 | - |
| 0.0192 | 200 | 2.2564 | - | - | - | - | - | - | - |
| 0.0202 | 210 | - | 2.0731 | 0.3990 | 0.1838 | 0.2834 | 0.2887 | 0.4811 | - |
| 0.0288 | 300 | 2.0837 | - | - | - | - | - | - | - |
| 0.0303 | 315 | - | 1.9839 | 0.4068 | 0.1827 | 0.2954 | 0.2950 | 0.5052 | - |
| 0.0384 | 400 | 1.9895 | - | - | - | - | - | - | - |
| 0.0404 | 420 | - | 1.9464 | 0.4197 | 0.1827 | 0.3050 | 0.3025 | 0.5148 | - |
| 0.0480 | 500 | 1.9635 | - | - | - | - | - | - | - |
| -1 | -1 | - | - | 0.4126 | 0.1832 | 0.3195 | 0.3051 | 0.5178 | 0.4660 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.156 kWh
- **Carbon Emitted**: 0.042 kg of CO2
- **Hours Used**: 0.794 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.2.0.dev0
- Transformers: 4.56.0.dev0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |