Upload folder using huggingface_hub
Browse files- configuration_llama_action.py +13 -0
- modeling_llama_action.py +237 -0
configuration_llama_action.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import LlamaConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class LlamaActionConfig(LlamaConfig):
|
| 5 |
+
model_type = "llama_action"
|
| 6 |
+
|
| 7 |
+
def __init__(self, **kwargs):
|
| 8 |
+
super().__init__(**kwargs)
|
| 9 |
+
self.num_spatio_embeddings = kwargs.get("num_spatio_embeddings", 582)
|
| 10 |
+
self.num_temporal_embeddings = kwargs.get("num_temporal_embeddings", 25)
|
| 11 |
+
self.num_action_embeddings = kwargs.get("num_action_tokens", 5)
|
| 12 |
+
self.num_image_patches = kwargs.get("num_image_patches", 576)
|
| 13 |
+
self.action_dim = kwargs.get("action_dim", 3)
|
modeling_llama_action.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from transformers import LlamaForCausalLM
|
| 6 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 7 |
+
|
| 8 |
+
from .configuration_llama_action import LlamaActionConfig
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class LearnableFactorizedSpatioTemporalPositionalEmbedding(nn.Module):
|
| 12 |
+
def __init__(self, num_spatio_embeddings: int, num_temporal_embeddings: int, embedding_dim: int):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.spatio_embeddings = nn.Embedding(num_spatio_embeddings, embedding_dim)
|
| 15 |
+
self.temporal_embeddings = nn.Embedding(num_temporal_embeddings, embedding_dim)
|
| 16 |
+
self.num_spatio_embeddings = num_spatio_embeddings
|
| 17 |
+
self.num_temporal_embeddings = num_temporal_embeddings
|
| 18 |
+
|
| 19 |
+
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int):
|
| 20 |
+
seq_length = attention_mask.size(1)
|
| 21 |
+
batch_size = attention_mask.size(0)
|
| 22 |
+
|
| 23 |
+
if past_key_values_length == 0:
|
| 24 |
+
# create a tensor of the form [0, 1, 2, ..., num_spatio_embeddings-1]
|
| 25 |
+
spatio_indices = torch.arange(
|
| 26 |
+
self.num_spatio_embeddings,
|
| 27 |
+
device=attention_mask.device
|
| 28 |
+
).repeat(self.num_temporal_embeddings).unsqueeze(0).repeat((batch_size, 1))
|
| 29 |
+
|
| 30 |
+
# create a tensor of the form [0, 0, 0, ..., 1, 1, 1, ..., 2, 2, 2, ...]
|
| 31 |
+
temporal_indices = torch.arange(
|
| 32 |
+
self.num_temporal_embeddings,
|
| 33 |
+
device=attention_mask.device
|
| 34 |
+
).repeat_interleave(self.num_spatio_embeddings).unsqueeze(0).repeat((batch_size, 1))
|
| 35 |
+
|
| 36 |
+
spatio_indices = spatio_indices[:, :seq_length]
|
| 37 |
+
temporal_indices = temporal_indices[:, :seq_length]
|
| 38 |
+
|
| 39 |
+
else:
|
| 40 |
+
temporal_index = past_key_values_length // self.num_spatio_embeddings
|
| 41 |
+
spatio_index = past_key_values_length % self.num_spatio_embeddings
|
| 42 |
+
spatio_indices = torch.tensor([[spatio_index]], device=attention_mask.device).repeat((batch_size, 1))
|
| 43 |
+
temporal_indices = torch.tensor([[temporal_index]], device=attention_mask.device).repeat((batch_size, 1))
|
| 44 |
+
|
| 45 |
+
return self.spatio_embeddings(spatio_indices) + self.temporal_embeddings(temporal_indices)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class LlamaActionForCausalLM(LlamaForCausalLM):
|
| 49 |
+
config_class = LlamaActionConfig
|
| 50 |
+
|
| 51 |
+
def __init__(self, config: LlamaActionConfig):
|
| 52 |
+
super().__init__(config)
|
| 53 |
+
|
| 54 |
+
self.num_spatio_embeddings = config.num_spatio_embeddings
|
| 55 |
+
self.num_temporal_embeddings = config.num_temporal_embeddings
|
| 56 |
+
self.num_image_patches = config.num_image_patches
|
| 57 |
+
self.num_action_embeddings = config.num_action_embeddings
|
| 58 |
+
|
| 59 |
+
self.pos_embedding_spatio_temporal = LearnableFactorizedSpatioTemporalPositionalEmbedding(
|
| 60 |
+
config.num_spatio_embeddings, config.num_temporal_embeddings, config.hidden_size,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
self.action_projection = nn.Linear(config.action_dim, config.hidden_size)
|
| 64 |
+
|
| 65 |
+
self.post_init()
|
| 66 |
+
|
| 67 |
+
def forward(
|
| 68 |
+
self,
|
| 69 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 70 |
+
actions: Optional[torch.Tensor] = None,
|
| 71 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 72 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 73 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 74 |
+
labels: Optional[torch.Tensor] = None,
|
| 75 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
| 76 |
+
use_cache: Optional[bool] = None,
|
| 77 |
+
output_attentions: Optional[bool] = None,
|
| 78 |
+
output_hidden_states: Optional[bool] = None,
|
| 79 |
+
return_dict: Optional[bool] = None,
|
| 80 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
|
| 81 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 82 |
+
if labels is not None:
|
| 83 |
+
use_cache = False
|
| 84 |
+
|
| 85 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 86 |
+
raise ValueError(
|
| 87 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 88 |
+
)
|
| 89 |
+
elif input_ids is not None:
|
| 90 |
+
pass
|
| 91 |
+
elif inputs_embeds is not None:
|
| 92 |
+
pass
|
| 93 |
+
else:
|
| 94 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 95 |
+
|
| 96 |
+
inputs_embeds = self.model.get_input_embeddings()(input_ids)
|
| 97 |
+
if past_key_values is None or len(past_key_values) == 0:
|
| 98 |
+
inputs_embeds_list = torch.split(
|
| 99 |
+
inputs_embeds,
|
| 100 |
+
split_size_or_sections=self.num_image_patches,
|
| 101 |
+
dim=1
|
| 102 |
+
)
|
| 103 |
+
actions_list = torch.split(
|
| 104 |
+
actions,
|
| 105 |
+
split_size_or_sections=self.num_action_embeddings,
|
| 106 |
+
dim=1
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
embeddings = []
|
| 110 |
+
if len(inputs_embeds_list) == len(actions_list):
|
| 111 |
+
# mostly used in training phase
|
| 112 |
+
for inputs_embeds, action_embeds in zip(inputs_embeds_list, actions_list):
|
| 113 |
+
action_features = self.action_projection(action_embeds)
|
| 114 |
+
embeddings.append(inputs_embeds)
|
| 115 |
+
embeddings.append(action_features)
|
| 116 |
+
elif len(inputs_embeds_list) < len(actions_list):
|
| 117 |
+
# used in inference phase (mostly)
|
| 118 |
+
for i, inputs_embeds in enumerate(inputs_embeds_list):
|
| 119 |
+
embeddings.append(inputs_embeds)
|
| 120 |
+
if i < len(inputs_embeds_list) - 1:
|
| 121 |
+
# the last frame might be generating image tokens, so we don't add action embedding
|
| 122 |
+
action_embeds = self.action_projection(actions_list[i])
|
| 123 |
+
embeddings.append(action_embeds)
|
| 124 |
+
if inputs_embeds_list[-1].size(1) == self.num_image_patches:
|
| 125 |
+
# if the last frame has generated all image tokens, we add action embedding
|
| 126 |
+
action_embeds = self.action_projection(actions_list[len(inputs_embeds_list) - 1])
|
| 127 |
+
embeddings.append(action_embeds)
|
| 128 |
+
else:
|
| 129 |
+
if isinstance(past_key_values, tuple):
|
| 130 |
+
past_key_values_length = past_key_values[0][0].size(2)
|
| 131 |
+
else:
|
| 132 |
+
past_key_values_length = past_key_values.get_seq_length()
|
| 133 |
+
embeddings = []
|
| 134 |
+
# create an interleaved sequence of image and action embeddings like image, image, ..., image, action, action, ..., action
|
| 135 |
+
# we only generate image tokens, so we add action tokens after generating one frame
|
| 136 |
+
if past_key_values_length % self.num_spatio_embeddings == (self.num_spatio_embeddings - self.num_action_embeddings):
|
| 137 |
+
seq_index = past_key_values_length // self.num_spatio_embeddings + 1
|
| 138 |
+
actions_list = torch.split(
|
| 139 |
+
actions,
|
| 140 |
+
split_size_or_sections=self.num_action_embeddings,
|
| 141 |
+
dim=1
|
| 142 |
+
)
|
| 143 |
+
action_features = self.action_projection(actions_list[seq_index - 1])
|
| 144 |
+
embeddings.append(action_features)
|
| 145 |
+
embeddings.append(inputs_embeds)
|
| 146 |
+
else:
|
| 147 |
+
pass
|
| 148 |
+
|
| 149 |
+
if len(embeddings) > 0:
|
| 150 |
+
inputs_embeds = torch.cat(embeddings, dim=1)
|
| 151 |
+
|
| 152 |
+
# insert spatio-temporal positional embedding
|
| 153 |
+
if past_key_values is not None:
|
| 154 |
+
if isinstance(past_key_values, tuple):
|
| 155 |
+
past_key_values_length = past_key_values[0][0].size(2)
|
| 156 |
+
else:
|
| 157 |
+
past_key_values_length = past_key_values.get_seq_length()
|
| 158 |
+
else:
|
| 159 |
+
past_key_values_length = 0
|
| 160 |
+
inputs_embeds += self.pos_embedding_spatio_temporal(inputs_embeds, past_key_values_length)
|
| 161 |
+
|
| 162 |
+
outputs = self.model(
|
| 163 |
+
input_ids=None,
|
| 164 |
+
attention_mask=attention_mask,
|
| 165 |
+
position_ids=position_ids,
|
| 166 |
+
past_key_values=past_key_values,
|
| 167 |
+
inputs_embeds=inputs_embeds,
|
| 168 |
+
use_cache=use_cache,
|
| 169 |
+
output_attentions=output_attentions,
|
| 170 |
+
output_hidden_states=output_hidden_states,
|
| 171 |
+
return_dict=return_dict,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
sequence_output = outputs[0]
|
| 175 |
+
logits = self.lm_head(sequence_output).contiguous()
|
| 176 |
+
|
| 177 |
+
loss = None
|
| 178 |
+
if labels is not None:
|
| 179 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 180 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 181 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 182 |
+
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
| 183 |
+
|
| 184 |
+
if not return_dict:
|
| 185 |
+
output = (logits,) + outputs[1:]
|
| 186 |
+
return ((loss,) + output) if loss is not None else output
|
| 187 |
+
|
| 188 |
+
return CausalLMOutputWithPast(
|
| 189 |
+
loss=loss,
|
| 190 |
+
logits=logits,
|
| 191 |
+
past_key_values=outputs.past_key_values,
|
| 192 |
+
hidden_states=outputs.hidden_states,
|
| 193 |
+
attentions=outputs.attentions,
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
def prepare_inputs_for_generation(
|
| 197 |
+
self,
|
| 198 |
+
input_ids,
|
| 199 |
+
past_key_values=None,
|
| 200 |
+
attention_mask=None,
|
| 201 |
+
use_cache=None,
|
| 202 |
+
**kwargs):
|
| 203 |
+
batch_size = input_ids.size(0)
|
| 204 |
+
seq_length = input_ids.size(1)
|
| 205 |
+
n_frames = seq_length // self.num_image_patches
|
| 206 |
+
attention_mask_length = n_frames * (self.num_image_patches + self.num_action_embeddings)
|
| 207 |
+
if seq_length % self.num_image_patches != 0:
|
| 208 |
+
n_last_frame_tokens = seq_length % self.num_image_patches
|
| 209 |
+
attention_mask_length += n_last_frame_tokens
|
| 210 |
+
else:
|
| 211 |
+
print(f"attempting to generate new frame - frame no: {n_frames + 1}")
|
| 212 |
+
attention_mask = torch.ones((batch_size, attention_mask_length), device=input_ids.device, dtype=torch.long)
|
| 213 |
+
# cut decoder_input_ids if past_key_values is used
|
| 214 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
| 215 |
+
if isinstance(past_key_values, tuple):
|
| 216 |
+
past_length = past_key_values[0][0].size(2)
|
| 217 |
+
else:
|
| 218 |
+
past_length = past_key_values.get_seq_length()
|
| 219 |
+
if input_ids.size(1) > past_length:
|
| 220 |
+
remove_prefix_length = past_length
|
| 221 |
+
else:
|
| 222 |
+
remove_prefix_length = input_ids.size(1) - 1
|
| 223 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 224 |
+
seq_length = input_ids.size(1)
|
| 225 |
+
past_key_values_length = past_length
|
| 226 |
+
mask_seq_length = seq_length + past_key_values_length
|
| 227 |
+
if past_key_values_length % self.num_spatio_embeddings == (self.num_spatio_embeddings - self.num_action_embeddings):
|
| 228 |
+
mask_seq_length += self.num_action_embeddings
|
| 229 |
+
attention_mask = torch.ones((batch_size, mask_seq_length), device=input_ids.device, dtype=torch.long)
|
| 230 |
+
|
| 231 |
+
return {
|
| 232 |
+
"input_ids": input_ids,
|
| 233 |
+
"attention_mask": attention_mask,
|
| 234 |
+
"actions": kwargs.get("actions"),
|
| 235 |
+
"past_key_values": past_key_values,
|
| 236 |
+
"use_cache": use_cache,
|
| 237 |
+
}
|