Upload inference.py with huggingface_hub
Browse files- inference.py +8 -2
inference.py
CHANGED
|
@@ -20,6 +20,10 @@ TRAJ_TEMPLATE_PATH = Path("./assets/template_trajectory.json")
|
|
| 20 |
PATH_START_ID = 9
|
| 21 |
PATH_POINT_INTERVAL = 10
|
| 22 |
N_ACTION_TOKENS = 6
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# change here if you want to use your own images
|
| 25 |
CONDITIONING_FRAMES_DIR = Path("./assets/conditioning_frames")
|
|
@@ -109,6 +113,7 @@ if __name__ == "__main__":
|
|
| 109 |
parser.add_argument("--cmd", type=str, default="curving_to_left/curving_to_left_moderate")
|
| 110 |
parser.add_argument("--num_frames", type=int, default=25)
|
| 111 |
parser.add_argument("--num_overlapping_frames", type=int, default=3)
|
|
|
|
| 112 |
args = parser.parse_args()
|
| 113 |
|
| 114 |
assert args.num_frames <= MAX_NUM_FRAMES, f"`num_frames` should be less than or equal to {MAX_NUM_FRAMES}"
|
|
@@ -122,8 +127,9 @@ if __name__ == "__main__":
|
|
| 122 |
output_dir.mkdir(parents=True, exist_ok=True)
|
| 123 |
|
| 124 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 125 |
-
|
| 126 |
-
|
|
|
|
| 127 |
|
| 128 |
conditioning_frames = load_images(CONDITIONING_FRAMES_PATH_LIST, IMAGE_SIZE).to(device)
|
| 129 |
with torch.inference_mode(), torch.autocast(device_type="cuda"):
|
|
|
|
| 20 |
PATH_START_ID = 9
|
| 21 |
PATH_POINT_INTERVAL = 10
|
| 22 |
N_ACTION_TOKENS = 6
|
| 23 |
+
WM_TOKENIZER_COMBINATION = {
|
| 24 |
+
"world_model": "lfq_tokenizer_B_256",
|
| 25 |
+
"world_model_v2": "lfq_tokenizer_B_256_ema",
|
| 26 |
+
}
|
| 27 |
|
| 28 |
# change here if you want to use your own images
|
| 29 |
CONDITIONING_FRAMES_DIR = Path("./assets/conditioning_frames")
|
|
|
|
| 113 |
parser.add_argument("--cmd", type=str, default="curving_to_left/curving_to_left_moderate")
|
| 114 |
parser.add_argument("--num_frames", type=int, default=25)
|
| 115 |
parser.add_argument("--num_overlapping_frames", type=int, default=3)
|
| 116 |
+
parser.add_argument("--model_name", type=str, default="world_model_v2")
|
| 117 |
args = parser.parse_args()
|
| 118 |
|
| 119 |
assert args.num_frames <= MAX_NUM_FRAMES, f"`num_frames` should be less than or equal to {MAX_NUM_FRAMES}"
|
|
|
|
| 127 |
output_dir.mkdir(parents=True, exist_ok=True)
|
| 128 |
|
| 129 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 130 |
+
tokenizer_name = WM_TOKENIZER_COMBINATION[args.model_name]
|
| 131 |
+
tokenizer = AutoModel.from_pretrained("turing-motors/Terra", subfolder=tokenizer_name, trust_remote_code=True).to(device).eval()
|
| 132 |
+
model = AutoModel.from_pretrained("turing-motors/Terra", subfolder=args.model_name, trust_remote_code=True).to(device).eval()
|
| 133 |
|
| 134 |
conditioning_frames = load_images(CONDITIONING_FRAMES_PATH_LIST, IMAGE_SIZE).to(device)
|
| 135 |
with torch.inference_mode(), torch.autocast(device_type="cuda"):
|