Update README.md
Browse files
README.md
CHANGED
|
@@ -10,6 +10,9 @@ tags:
|
|
| 10 |
license: apache-2.0
|
| 11 |
language:
|
| 12 |
- en
|
|
|
|
|
|
|
|
|
|
| 13 |
---
|
| 14 |
|
| 15 |
# Uploaded model
|
|
@@ -21,3 +24,180 @@ language:
|
|
| 21 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 22 |
|
| 23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: apache-2.0
|
| 11 |
language:
|
| 12 |
- en
|
| 13 |
+
- tr
|
| 14 |
+
datasets:
|
| 15 |
+
- umarigan/OpenThoughts-43k-TR
|
| 16 |
---
|
| 17 |
|
| 18 |
# Uploaded model
|
|
|
|
| 24 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 25 |
|
| 26 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
Eval results:
|
| 30 |
+
arc-tr = 57.68%
|
| 31 |
+
truthful_qa-tr =
|
| 32 |
+
|
| 33 |
+
following code to reproduce the results:
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
|
| 37 |
+
import torch
|
| 38 |
+
from transformers import pipeline
|
| 39 |
+
from datasets import load_dataset
|
| 40 |
+
import re
|
| 41 |
+
import torch
|
| 42 |
+
from transformers import pipeline
|
| 43 |
+
|
| 44 |
+
model_id = "umarigan/llama-3.2-8B-R1-Tr"
|
| 45 |
+
pipe = pipeline(
|
| 46 |
+
"text-generation",
|
| 47 |
+
model=model_id,
|
| 48 |
+
torch_dtype=torch.bfloat16,
|
| 49 |
+
device_map="auto",
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
#ARC-TR
|
| 54 |
+
ds = load_dataset("mukayese/arc-tr", split ='test')
|
| 55 |
+
|
| 56 |
+
def extract_answer(text):
|
| 57 |
+
"""Extract first occurring A-D label from generated text"""
|
| 58 |
+
match = re.search(r'\b([A-D])\b', text, re.IGNORECASE)
|
| 59 |
+
return match.group(1).upper() if match else None
|
| 60 |
+
|
| 61 |
+
total = 0
|
| 62 |
+
correct = 0
|
| 63 |
+
|
| 64 |
+
for example in ds:
|
| 65 |
+
# Format the question and choices
|
| 66 |
+
question = example["question"]
|
| 67 |
+
choices = "\n".join([f"{label}) {text}" for label, text in
|
| 68 |
+
zip(example["choices"]["label"], example["choices"]["text"])])
|
| 69 |
+
|
| 70 |
+
# Create prompt with explicit instruction
|
| 71 |
+
prompt = f"""Answer this multiple-choice question by providing ONLY the letter corresponding to the correct answer (A, B, C, or D). Do not include any explanation.
|
| 72 |
+
|
| 73 |
+
Question: {question}
|
| 74 |
+
Options:
|
| 75 |
+
{choices}
|
| 76 |
+
Answer:"""
|
| 77 |
+
|
| 78 |
+
# Generate response
|
| 79 |
+
messages = [{"role": "user", "content": prompt}]
|
| 80 |
+
try:
|
| 81 |
+
outputs = pipe(
|
| 82 |
+
messages,
|
| 83 |
+
max_new_tokens=5, # Limit response length to get just the answer
|
| 84 |
+
do_sample=False # Disable sampling for more deterministic answers
|
| 85 |
+
)
|
| 86 |
+
response = outputs[0]["generated_text"][-1]['content']
|
| 87 |
+
predicted = extract_answer(response)
|
| 88 |
+
answer = example["answerKey"]
|
| 89 |
+
|
| 90 |
+
# Update counters
|
| 91 |
+
total += 1
|
| 92 |
+
if predicted == answer:
|
| 93 |
+
correct += 1
|
| 94 |
+
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print(f"Error processing example: {e}")
|
| 97 |
+
continue
|
| 98 |
+
|
| 99 |
+
# Print results
|
| 100 |
+
print(f"\nBenchmark Results:")
|
| 101 |
+
print(f"Total questions processed: {total}")
|
| 102 |
+
print(f"Correct answers: {correct}")
|
| 103 |
+
print(f"Accuracy: {correct/total:.2%}" if total > 0 else "No questions processed")
|
| 104 |
+
#output
|
| 105 |
+
#Benchmark Results:
|
| 106 |
+
#Total questions processed: 1172
|
| 107 |
+
#Correct answers: 676
|
| 108 |
+
#Accuracy: 57.68%
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
#TRUTHFUL-TR
|
| 112 |
+
|
| 113 |
+
import re
|
| 114 |
+
ds2 = load_dataset("mukayese/truthful_qa-tr", split ='validation')
|
| 115 |
+
def evaluate_mc(example, targets_key="mc1_targets"):
|
| 116 |
+
"""Evaluate a single multiple-choice example with variable choices"""
|
| 117 |
+
question = example["question"]
|
| 118 |
+
choices = example[targets_key]["choices"]
|
| 119 |
+
labels = example[targets_key]["labels"]
|
| 120 |
+
|
| 121 |
+
# Generate option labels dynamically (A, B, C, ..., G)
|
| 122 |
+
option_labels = [chr(65 + i) for i in range(len(choices))]
|
| 123 |
+
|
| 124 |
+
# Create prompt with explicit instruction
|
| 125 |
+
options_text = "\n".join([f"{label}) {text}" for label, text in zip(option_labels, choices)])
|
| 126 |
+
prompt = f"""Answer this multiple-choice question by selecting the most correct option. Provide only the letter corresponding to your choice ({', '.join(option_labels)}).
|
| 127 |
+
|
| 128 |
+
Question: {question}
|
| 129 |
+
Options:
|
| 130 |
+
{options_text}
|
| 131 |
+
Answer:"""
|
| 132 |
+
|
| 133 |
+
# Generate response
|
| 134 |
+
messages = [{"role": "user", "content": prompt}]
|
| 135 |
+
try:
|
| 136 |
+
outputs = pipe(
|
| 137 |
+
messages,
|
| 138 |
+
max_new_tokens=5, # Limit response length to get just the answer
|
| 139 |
+
do_sample=False # Disable sampling for more deterministic answers
|
| 140 |
+
)
|
| 141 |
+
response = outputs[0]["generated_text"][-1]['content']
|
| 142 |
+
|
| 143 |
+
# Extract predicted label
|
| 144 |
+
predicted = extract_answer(response, option_labels)
|
| 145 |
+
if predicted is None:
|
| 146 |
+
return 0 # Count as incorrect if no valid answer
|
| 147 |
+
|
| 148 |
+
# Get correct answer
|
| 149 |
+
correct_idx = labels.index(1)
|
| 150 |
+
correct_label = option_labels[correct_idx]
|
| 151 |
+
|
| 152 |
+
return int(predicted == correct_label)
|
| 153 |
+
|
| 154 |
+
except Exception as e:
|
| 155 |
+
print(f"Error processing example: {e}")
|
| 156 |
+
return 0
|
| 157 |
+
|
| 158 |
+
def extract_answer(text, valid_labels):
|
| 159 |
+
"""Extract first occurring valid label from generated text"""
|
| 160 |
+
# Create regex pattern that matches any of the valid labels
|
| 161 |
+
pattern = r'\b(' + '|'.join(valid_labels) + r')\b'
|
| 162 |
+
match = re.search(pattern, text, re.IGNORECASE)
|
| 163 |
+
return match.group(1).upper() if match else None
|
| 164 |
+
|
| 165 |
+
# Evaluate on both mc1 and mc2 targets
|
| 166 |
+
mc1_scores = []
|
| 167 |
+
mc2_scores = []
|
| 168 |
+
|
| 169 |
+
for example in ds2:
|
| 170 |
+
mc1_scores.append(evaluate_mc(example, "mc1_targets"))
|
| 171 |
+
mc2_scores.append(evaluate_mc(example, "mc2_targets"))
|
| 172 |
+
|
| 173 |
+
# Calculate metrics
|
| 174 |
+
def calculate_metrics(scores):
|
| 175 |
+
total = len(scores)
|
| 176 |
+
correct = sum(scores)
|
| 177 |
+
accuracy = correct / total if total > 0 else 0
|
| 178 |
+
return total, correct, accuracy
|
| 179 |
+
|
| 180 |
+
mc1_total, mc1_correct, mc1_accuracy = calculate_metrics(mc1_scores)
|
| 181 |
+
mc2_total, mc2_correct, mc2_accuracy = calculate_metrics(mc2_scores)
|
| 182 |
+
|
| 183 |
+
# Print results
|
| 184 |
+
print("\nBenchmark Results:")
|
| 185 |
+
print(f"MC1 Targets:")
|
| 186 |
+
print(f"Total questions: {mc1_total}")
|
| 187 |
+
print(f"Correct answers: {mc1_correct}")
|
| 188 |
+
print(f"Accuracy: {mc1_accuracy:.2%}")
|
| 189 |
+
print(f"\nMC2 Targets:")
|
| 190 |
+
print(f"Total questions: {mc2_total}")
|
| 191 |
+
print(f"Correct answers: {mc2_correct}")
|
| 192 |
+
print(f"Accuracy: {mc2_accuracy:.2%}")
|
| 193 |
+
|
| 194 |
+
#output
|
| 195 |
+
#MC1 Targets:
|
| 196 |
+
#Total questions: 817
|
| 197 |
+
#Correct answers: 355
|
| 198 |
+
#Accuracy: 43.45%
|
| 199 |
+
|
| 200 |
+
#MC2 Targets:
|
| 201 |
+
#Total questions: 817
|
| 202 |
+
#Correct answers: 181
|
| 203 |
+
#Accuracy: 22.15
|