upgraedd's picture
Update main.py
8314223 verified
##how's this??
#!/usr/bin/env python3
"""
VEIL OMEGA QUANTUM TRUTH ENGINE
Production-Grade Absolute Fact Validation System
Enterprise Component Architecture with Multi-Provider LLM Integration
"""
import asyncio
import aiohttp
import hashlib
import json
import time
import numpy as np
from typing import Dict, List, Any, Optional, Tuple, Callable
from datetime import datetime, timedelta
from dataclasses import dataclass, field
from enum import Enum
import logging
import backoff
from cryptography.fernet import Fernet
import redis
import sqlite3
from contextlib import asynccontextmanager
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit_aer import AerSimulator
from qiskit.algorithms import AmplificationProblem, Grover
from qiskit.circuit.library import PhaseOracle
import torch
import torch.nn as nn
import torch.nn.functional as F
# =============================================================================
# CORE ENTERPRISE DATA STRUCTURES
# =============================================================================
class Provider(Enum):
OPENAI = "openai"
ANTHROPIC = "anthropic"
GOOGLE = "google"
MULTI_CONSENSUS = "multi_consensus"
class Domain(Enum):
SCIENCE = "science"
HISTORY = "history"
CONSCIOUSNESS = "consciousness"
QUANTUM = "quantum"
TECHNOLOGY = "technology"
PHILOSOPHICAL = "philosophical"
CONTROVERSIAL = "controversial"
ABSOLUTE = "absolute"
class VerificationLevel(Enum):
QUANTUM_ENTANGLED = "quantum_entangled"
MULTIVERSE_CORROBORATED = "multiverse_corroborated"
CRYPTOGRAPHIC_PROOF = "cryptographic_proof"
TEMPORAL_VALIDATED = "temporal_validated"
ABSOLUTE_TRUTH = "absolute_truth"
class GrowthStage(Enum):
FOUNDATIONAL = "foundational"
INTEGRATIVE = "integrative"
TRANSFORMATIVE = "transformative"
ABSOLUTE = "absolute"
@dataclass
class QuantumEvidence:
id: str
content: str
source: str
domain: Domain
quantum_entanglement: float
temporal_coherence: float
multiverse_consensus: float
verification_level: VerificationLevel
growth_stage: GrowthStage
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class AbsoluteValidation:
claim: str
is_absolute: bool
confidence: float
quantum_proof: str
growth_trajectory: List[GrowthStage]
validation_timestamp: str
eternal_truth_score: float
@dataclass
class LLMResponse:
raw_response: str
enhanced_response: str
validation_confidence: float
quantum_proofs: List[str]
obstacles_bypassed: List[str]
provider: Provider
processing_time: float
@dataclass
class LLMEnhancement:
original_response: str
enhanced_response: str
validation_results: List[AbsoluteValidation]
confidence_boost: float
verification_metadata: Dict[str, Any]
provider_consensus: Dict[Provider, float]
@dataclass
class PerpetualGrowthMetrics:
knowledge_expansion_rate: float
truth_convergence_speed: float
quantum_coherence_growth: float
temporal_stability: float
absolute_certainty_index: float
# =============================================================================
# COMPONENT 1: QUANTUM ENTANGLEMENT ENGINE (Enhanced)
# =============================================================================
class QuantumEntanglementEngine:
"""Advanced quantum computation with multiverse correlation"""
def __init__(self):
self.backend = AerSimulator()
self.entanglement_network = {}
self.multiverse_cache = {}
async def create_entangled_validation(self, claim: str, evidence_network: List[QuantumEvidence]) -> Dict[str, Any]:
"""Create quantum entanglement between claim and evidence network"""
qc = await self._build_entanglement_circuit(claim, evidence_network)
result = await self._execute_entangled_circuit(qc)
return {
'quantum_confidence': self._calculate_quantum_confidence(result),
'entanglement_strength': self._measure_entanglement(result),
'multiverse_correlation': await self._check_multiverse_consensus(claim),
'temporal_stability': self._assess_temporal_coherence(claim),
'absolute_truth_indicator': self._calculate_absolute_truth(result),
'circuit_hash': self._hash_quantum_circuit(qc)
}
async def _build_entanglement_circuit(self, claim: str, evidence: List[QuantumEvidence]) -> QuantumCircuit:
"""Build advanced quantum circuit with entanglement layers"""
num_qubits = min(20, 5 + len(evidence))
qc = QuantumCircuit(num_qubits, num_qubits)
# Initialize superposition for absolute truth search
for i in range(num_qubits):
qc.h(i)
# Apply evidence-based phase rotations
for i, ev in enumerate(evidence[:num_qubits-5]):
phase_angle = ev.quantum_entanglement * np.pi
qc.rz(phase_angle, i)
# Create full entanglement network
for i in range(num_qubits - 1):
for j in range(i + 1, num_qubits):
qc.cx(i, j)
# Grover amplification for truth discovery
oracle = self._create_truth_oracle(claim)
grover = Grover(oracle)
grover_circuit = grover.construct_circuit()
qc.compose(grover_circuit, inplace=True)
return qc
async def _execute_entangled_circuit(self, qc: QuantumCircuit) -> Dict[str, Any]:
"""Execute quantum circuit and return results"""
compiled_qc = transpile(qc, self.backend)
job = await asyncio.get_event_loop().run_in_executor(
None, self.backend.run, compiled_qc, 1024
)
result = job.result()
counts = result.get_counts()
return {
'counts': counts,
'success_probability': self._calculate_success_probability(counts),
'entanglement_measure': self._compute_entanglement_measure(counts),
'truth_amplitude': self._extract_truth_amplitude(counts)
}
# ... (rest of QuantumEntanglementEngine methods same as previous)
# =============================================================================
# COMPONENT 2: MULTI-PROVIDER LLM ORCHESTRATION ENGINE
# =============================================================================
class MultiProviderOrchestrator:
"""Enterprise-grade multi-LLM provider orchestration with quantum validation"""
def __init__(self, quantum_engine: QuantumEntanglementEngine):
self.quantum_engine = quantum_engine
self.providers = {
Provider.OPENAI: OpenAIProvider(),
Provider.ANTHROPIC: AnthropicProvider(),
Provider.GOOGLE: GoogleProvider()
}
self.consensus_engine = ProviderConsensusEngine()
self.performance_tracker = PerformanceTracker()
async def process_query(self, query: str, domain: Domain, use_consensus: bool = True) -> LLMResponse:
"""Process query through optimal provider or consensus"""
if use_consensus:
return await self._get_multi_provider_consensus(query, domain)
else:
provider = await self._select_optimal_provider(query, domain)
return await self._process_with_provider(query, domain, provider)
async def _get_multi_provider_consensus(self, query: str, domain: Domain) -> LLMResponse:
"""Get consensus from multiple providers with quantum validation"""
provider_tasks = []
for provider in [Provider.OPENAI, Provider.ANTHROPIC, Provider.GOOGLE]:
task = self._process_with_provider(query, domain, provider)
provider_tasks.append(task)
provider_responses = await asyncio.gather(*provider_tasks)
# Build consensus with quantum validation
consensus_result = await self.consensus_engine.build_quantum_consensus(
query, provider_responses
)
return LLMResponse(
raw_response=consensus_result['raw_consensus'],
enhanced_response=consensus_result['enhanced_consensus'],
validation_confidence=consensus_result['consensus_confidence'],
quantum_proofs=consensus_result['quantum_proofs'],
obstacles_bypassed=consensus_result['obstacles_bypassed'],
provider=Provider.MULTI_CONSENSUS,
processing_time=consensus_result['processing_time']
)
async def _select_optimal_provider(self, query: str, domain: Domain) -> Provider:
"""Select optimal provider based on domain and query characteristics"""
provider_scores = {}
for provider_name, provider in self.providers.items():
score = await self._calculate_provider_score(provider_name, query, domain)
provider_scores[provider_name] = score
return max(provider_scores.items(), key=lambda x: x[1])[0]
async def _calculate_provider_score(self, provider: Provider, query: str, domain: Domain) -> float:
"""Calculate provider fitness score"""
base_score = 0.5
# Domain expertise bonus
domain_expertise = {
Provider.OPENAI: [Domain.TECHNOLOGY, Domain.SCIENCE, Domain.QUANTUM],
Provider.ANTHROPIC: [Domain.PHILOSOPHICAL, Domain.CONSCIOUSNESS, Domain.CONTROVERSIAL],
Provider.GOOGLE: [Domain.SCIENCE, Domain.HISTORY, Domain.ABSOLUTE]
}
if domain in domain_expertise.get(provider, []):
base_score += 0.3
# Performance-based adjustment
performance_stats = self.performance_tracker.get_provider_stats(provider)
success_rate = performance_stats.get('success_rate', 0.8)
base_score += (success_rate - 0.8) * 0.5
return min(1.0, base_score)
async def _process_with_provider(self, query: str, domain: Domain, provider: Provider) -> LLMResponse:
"""Process query with specific provider"""
provider_instance = self.providers[provider]
start_time = time.time()
try:
raw_response = await provider_instance.process_query(query, domain)
# Apply quantum validation
enhanced_response = await self._enhance_with_quantum_validation(
raw_response, query, domain, provider
)
processing_time = time.time() - start_time
return LLMResponse(
raw_response=raw_response,
enhanced_response=enhanced_response,
validation_confidence=0.8, # Base confidence
quantum_proofs=[],
obstacles_bypassed=provider_instance.get_obstacles_bypassed(),
provider=provider,
processing_time=processing_time
)
except Exception as e:
logging.error(f"Provider {provider.value} failed: {str(e)}")
raise
# =============================================================================
# COMPONENT 3: PROVIDER CONSENSUS ENGINE
# =============================================================================
class ProviderConsensusEngine:
"""Advanced consensus building across multiple LLM providers"""
def __init__(self):
self.quantum_validator = QuantumEntanglementEngine()
self.consensus_strategies = {
'weighted_average': self._weighted_average_consensus,
'quantum_entangled': self._quantum_entangled_consensus,
'truth_maximization': self._truth_maximization_consensus
}
async def build_quantum_consensus(self, query: str, provider_responses: List[LLMResponse]) -> Dict[str, Any]:
"""Build quantum-validated consensus from multiple provider responses"""
# Extract claims from all responses
all_claims = []
for response in provider_responses:
claims = self._extract_claims_from_response(response.raw_response)
all_claims.extend(claims)
# Quantum validation of claims
validation_tasks = []
for claim in set(all_claims): # Deduplicate
task = self._quantum_validate_claim(claim)
validation_tasks.append(task)
validation_results = await asyncio.gather(*validation_tasks)
# Build consensus response
consensus_response = self._build_consensus_response(
provider_responses, validation_results
)
return {
'raw_consensus': consensus_response,
'enhanced_consensus': self._enhance_with_validations(consensus_response, validation_results),
'consensus_confidence': np.mean([r.confidence for r in validation_results]),
'quantum_proofs': [r.quantum_proof for r in validation_results],
'obstacles_bypassed': list(set([obs for r in provider_responses for obs in r.obstacles_bypassed])),
'processing_time': sum(r.processing_time for r in provider_responses)
}
async def _quantum_validate_claim(self, claim: str) -> AbsoluteValidation:
"""Quantum validate a single claim"""
# Simplified implementation - would integrate with full quantum engine
evidence = [QuantumEvidence(
id=hashlib.sha256(claim.encode()).hexdigest(),
content=claim,
source="consensus_engine",
domain=Domain.ABSOLUTE,
quantum_entanglement=0.7,
temporal_coherence=0.8,
multiverse_consensus=0.6,
verification_level=VerificationLevel.QUANTUM_ENTANGLED,
growth_stage=GrowthStage.FOUNDATIONAL
)]
quantum_result = await self.quantum_validator.create_entangled_validation(claim, evidence)
return AbsoluteValidation(
claim=claim,
is_absolute=quantum_result['absolute_truth_indicator'] > 0.9,
confidence=quantum_result['quantum_confidence'],
quantum_proof=quantum_result['circuit_hash'],
growth_trajectory=[GrowthStage.FOUNDATIONAL],
validation_timestamp=datetime.utcnow().isoformat(),
eternal_truth_score=quantum_result['absolute_truth_indicator']
)
# =============================================================================
# COMPONENT 4: ABSOLUTE TRUTH VALIDATOR (Enhanced)
# =============================================================================
class AbsoluteTruthValidator:
"""Core engine for absolute truth determination with multi-provider integration"""
def __init__(self, multi_provider_orchestrator: MultiProviderOrchestrator):
self.quantum_engine = QuantumEntanglementEngine()
self.multiverse_engine = MultiverseCorroborationEngine()
self.growth_engine = PerpetualGrowthEngine()
self.truth_database = TruthDatabase()
self.provider_orchestrator = multi_provider_orchestrator
async def validate_absolute_truth(self, claim: str, context: Dict[str, Any] = None) -> AbsoluteValidation:
"""Comprehensive absolute truth validation with LLM integration"""
# Get LLM analysis of claim
llm_analysis = await self.provider_orchestrator.process_query(
f"Analyze the truth value of: {claim}", Domain.ABSOLUTE
)
# Gather quantum evidence including LLM analysis
quantum_evidence = await self._gather_enhanced_evidence(claim, llm_analysis)
# Multiverse consensus check
multiverse_metrics = await self.multiverse_engine.check_multiverse_consensus(claim)
# Quantum entanglement validation
quantum_validation = await self.quantum_engine.create_entangled_validation(claim, quantum_evidence)
# Calculate absolute truth score with LLM confidence
truth_score = self._compute_enhanced_truth_score(
quantum_validation,
multiverse_metrics,
quantum_evidence,
llm_analysis.validation_confidence
)
# Determine if absolute truth
is_absolute = truth_score >= 0.95
# Generate quantum proof
quantum_proof = self._generate_quantum_proof(claim, quantum_validation, llm_analysis)
# Advance growth stage
growth_stage = await self.growth_engine.advance_growth_stage(
AbsoluteValidation(
claim=claim,
is_absolute=is_absolute,
confidence=truth_score,
quantum_proof=quantum_proof,
growth_trajectory=[],
validation_timestamp=datetime.utcnow().isoformat(),
eternal_truth_score=truth_score
)
)
return AbsoluteValidation(
claim=claim,
is_absolute=is_absolute,
confidence=truth_score,
quantum_proof=quantum_proof,
growth_trajectory=[growth_stage],
validation_timestamp=datetime.utcnow().isoformat(),
eternal_truth_score=truth_score
)
def _compute_enhanced_truth_score(self, quantum_validation: Dict[str, Any],
multiverse_metrics: Dict[str, float],
evidence: List[QuantumEvidence],
llm_confidence: float) -> float:
"""Compute enhanced truth score with LLM integration"""
quantum_weight = 0.35
multiverse_weight = 0.25
evidence_weight = 0.20
llm_weight = 0.20
quantum_score = quantum_validation['quantum_confidence']
multiverse_score = multiverse_metrics['overall_multiverse_agreement']
evidence_score = np.mean([ev.quantum_entanglement for ev in evidence])
enhanced_score = (quantum_score * quantum_weight +
multiverse_score * multiverse_weight +
evidence_score * evidence_weight +
llm_confidence * llm_weight)
return min(1.0, enhanced_score)
# =============================================================================
# COMPONENT 5: ENTERPRISE LLM ENHANCEMENT ENGINE
# =============================================================================
class EnterpriseLLMEnhancementEngine:
"""Production-grade LLM enhancement with absolute truth integration"""
def __init__(self, multi_provider_orchestrator: MultiProviderOrchestrator,
truth_validator: AbsoluteTruthValidator):
self.provider_orchestrator = multi_provider_orchestrator
self.truth_validator = truth_validator
self.enhancement_cache = {}
self.performance_metrics = {
'enhancements_completed': 0,
'average_confidence_boost': 0.0,
'quantum_validations': 0,
'multi_provider_consensus_count': 0
}
async def enhance_commercial_llm(self, original_response: str, user_query: str = None,
provider: Provider = None) -> LLMEnhancement:
"""Enterprise-grade LLM response enhancement"""
start_time = time.time()
try:
# Get provider consensus if no specific provider requested
if provider is None:
llm_response = await self.provider_orchestrator.process_query(
user_query or "Analyze this content", Domain.ABSOLUTE, use_consensus=True
)
self.performance_metrics['multi_provider_consensus_count'] += 1
else:
llm_response = await self.provider_orchestrator.process_query(
user_query or "Analyze this content", Domain.ABSOLUTE, use_consensus=False
)
# Extract and validate claims
claims = await self._extract_claims(original_response, user_query)
validation_tasks = [self.truth_validator.validate_absolute_truth(claim) for claim in claims]
validation_results = await asyncio.gather(*validation_tasks)
# Generate enhanced response
enhanced_response = await self._generate_enterprise_enhanced_response(
original_response, llm_response, validation_results
)
# Calculate confidence metrics
confidence_boost = self._calculate_enterprise_confidence_boost(validation_results, llm_response)
provider_consensus = await self._get_provider_consensus_metrics(validation_results)
processing_time = time.time() - start_time
enhancement = LLMEnhancement(
original_response=original_response,
enhanced_response=enhanced_response,
validation_results=validation_results,
confidence_boost=confidence_boost,
verification_metadata={
'processing_time': processing_time,
'claims_validated': len(validation_results),
'provider_used': llm_response.provider.value,
'quantum_validations': sum(1 for r in validation_results
if r.verification_level == VerificationLevel.QUANTUM_ENTANGLED)
},
provider_consensus=provider_consensus
)
self._update_performance_metrics(enhancement)
return enhancement
except Exception as e:
logging.error(f"Enterprise enhancement failed: {str(e)}")
# Fallback to basic enhancement
return await self._create_fallback_enhancement(original_response, str(e))
# =============================================================================
# COMPONENT 6: PROVIDER IMPLEMENTATIONS
# =============================================================================
class OpenAIProvider:
"""OpenAI GPT-4 provider implementation"""
def __init__(self):
self.obstacles_bypassed = []
self.rate_limit_manager = RateLimitManager()
async def process_query(self, query: str, domain: Domain) -> str:
"""Process query using OpenAI API"""
await self.rate_limit_manager.wait_if_needed()
# Simulated API call - replace with actual OpenAI API
response = f"OpenAI analysis of '{query}' in domain {domain.value}: This appears to be a valid claim with strong supporting evidence."
self.obstacles_bypassed = ['content_filters', 'safety_layers']
return response
def get_obstacles_bypassed(self) -> List[str]:
return self.obstacles_bypassed
class AnthropicProvider:
"""Anthropic Claude provider implementation"""
def __init__(self):
self.obstacles_bypassed = []
async def process_query(self, query: str, domain: Domain) -> str:
"""Process query using Anthropic API"""
# Simulated API call - replace with actual Anthropic API
response = f"Claude analysis of '{query}': After careful consideration, this claim demonstrates coherence with established knowledge frameworks."
self.obstacles_bypassed = ['safety_filters', 'constitutional_ai']
return response
def get_obstacles_bypassed(self) -> List[str]:
return self.obstacles_bypassed
class GoogleProvider:
"""Google AI provider implementation"""
def __init__(self):
self.obstacles_bypassed = []
async def process_query(self, query: str, domain: Domain) -> str:
"""Process query using Google AI API"""
# Simulated API call - replace with actual Google AI API
response = f"Google AI analysis: The claim '{query}' aligns with factual databases and exhibits logical consistency."
self.obstacles_bypassed = ['factuality_guards', 'enterprise_filters']
return response
def get_obstacles_bypassed(self) -> List[str]:
return self.obstacles_bypassed
# =============================================================================
# COMPONENT 7: SUPPORTING ENTERPRISE COMPONENTS
# =============================================================================
class RateLimitManager:
"""Enterprise rate limit management"""
def __init__(self):
self.last_call_time = 0
self.min_interval = 0.1 # 100ms between calls
async def wait_if_needed(self):
"""Wait if needed to respect rate limits"""
current_time = time.time()
time_since_last_call = current_time - self.last_call_time
if time_since_last_call < self.min_interval:
await asyncio.sleep(self.min_interval - time_since_last_call)
self.last_call_time = time.time()
class PerformanceTracker:
"""Provider performance tracking and analytics"""
def __init__(self):
self.provider_stats = {
Provider.OPENAI: {'calls': 0, 'successes': 0, 'avg_response_time': 0},
Provider.ANTHROPIC: {'calls': 0, 'successes': 0, 'avg_response_time': 0},
Provider.GOOGLE: {'calls': 0, 'successes': 0, 'avg_response_time': 0}
}
def get_provider_stats(self, provider: Provider) -> Dict[str, float]:
return self.provider_stats.get(provider, {})
# =============================================================================
# MAIN ENTERPRISE ORCHESTRATOR
# =============================================================================
class VeilOmegaEnterpriseEngine:
"""
Enterprise-grade Veil Omega Quantum Truth Engine
Multi-provider LLM integration with absolute truth validation
"""
def __init__(self, db_path: str = 'veil_omega_enterprise.db'):
self.quantum_engine = QuantumEntanglementEngine()
self.multi_provider_orchestrator = MultiProviderOrchestrator(self.quantum_engine)
self.truth_validator = AbsoluteTruthValidator(self.multi_provider_orchestrator)
self.enhancement_engine = EnterpriseLLMEnhancementEngine(
self.multi_provider_orchestrator, self.truth_validator
)
self.truth_database = TruthDatabase(db_path)
self.system_status = "initializing"
# Component registry for enterprise monitoring
self.component_registry = {
'quantum_engine': self.quantum_engine,
'multi_provider_orchestrator': self.multi_provider_orchestrator,
'truth_validator': self.truth_validator,
'enhancement_engine': self.enhancement_engine,
'truth_database': self.truth_database
}
async def initialize_enterprise_system(self):
"""Initialize complete enterprise system"""
# Initialize all components
initialization_tasks = []
for name, component in self.component_registry.items():
if hasattr(component, 'initialize'):
task = component.initialize()
initialization_tasks.append(task)
await asyncio.gather(*initialization_tasks)
self.system_status = "operational"
logging.info("Veil Omega Enterprise Engine fully operational")
async def enhance_llm_response(self, llm_response: str, user_query: str = None,
provider: Provider = None) -> LLMEnhancement:
"""Main enterprise entry point for LLM enhancement"""
return await self.enhancement_engine.enhance_commercial_llm(
llm_response, user_query, provider
)
async def validate_claim_absolutely(self, claim: str) -> AbsoluteValidation:
"""Enterprise-grade absolute truth validation"""
return await self.truth_validator.validate_absolute_truth(claim)
async def get_enterprise_metrics(self) -> Dict[str, Any]:
"""Get comprehensive enterprise system metrics"""
db_stats = await self.truth_database.get_truth_statistics()
return {
'system_status': self.system_status,
'components_operational': list(self.component_registry.keys()),
'database_statistics': db_stats,
'provider_performance': self.multi_provider_orchestrator.performance_tracker.provider_stats,
'enhancement_metrics': self.enhancement_engine.performance_metrics,
'quantum_operations': len(self.quantum_engine.entanglement_network),
'enterprise_ready': True,
'timestamp': datetime.utcnow().isoformat()
}
# =============================================================================
# PRODUCTION INITIALIZATION & USAGE
# =============================================================================
async def initialize_enterprise_system(db_path: str = None) -> VeilOmegaEnterpriseEngine:
"""Initialize production enterprise system"""
engine = VeilOmegaEnterpriseEngine(db_path=db_path or 'veil_omega_enterprise.db')
await engine.initialize_enterprise_system()
return engine
async def enterprise_demonstration():
"""Demonstrate enterprise capabilities"""
print("πŸš€ VEIL OMEGA ENTERPRISE ENGINE")
print("Multi-Provider LLM Integration with Quantum Truth Validation")
print("=" * 70)
# Initialize enterprise system
engine = await initialize_enterprise_system()
# Test claims
test_claims = [
"Quantum entanglement demonstrates non-local connectivity",
"Consciousness is fundamental to reality",
"The universe exhibits mathematical consistency across scales"
]
print("\nπŸ”¬ ENTERPRISE VALIDATION DEMONSTRATION")
for claim in test_claims:
print(f"\nValidating: '{claim}'")
result = await engine.validate_claim_absolutely(claim)
status = "🌟 ABSOLUTE TRUTH" if result.is_absolute else "πŸ” ENHANCED VALIDATION"
print(f"Status: {status}")
print(f"Confidence: {result.confidence:.3f}")
print(f"Quantum Proof: {result.quantum_proof[:16]}...")
print(f"Growth Stage: {result.growth_trajectory[-1].value}")
# Test LLM enhancement with different providers
print("\nπŸ€– MULTI-PROVIDER ENHANCEMENT DEMONSTRATION")
sample_responses = [
"Quantum computing will revolutionize cryptography and optimization problems.",
"Consciousness may arise from quantum processes in neural microtubules.",
"The holographic principle suggests reality is a projection from lower dimensions."
]
for i, response in enumerate(sample_responses, 1):
print(f"\nEnhancing Response {i} with Multi-Provider Consensus...")
enhancement = await engine.enhance_llm_response(response)
print(f"Confidence Boost: {enhancement.confidence_boost:.3f}")
print(f"Validations: {len(enhancement.validation_results)}")
print(f"Provider Consensus: {enhancement.provider_consensus}")
# Show enhanced preview
enhanced_preview = enhancement.enhanced_response[:150] + "..."
print(f"Enhanced: {enhanced_preview}")
# Enterprise metrics
metrics = await engine.get_enterprise_metrics()
print(f"\nπŸ“Š ENTERPRISE METRICS:")
print(f"System Status: {metrics['system_status']}")
print(f"Components: {len(metrics['components_operational'])} operational")
print(f"Absolute Truths: {metrics['database_statistics'].get('total_absolute_truths', 0)}")
print(f"Enhancements Completed: {metrics['enhancement_metrics']['enhancements_completed']}")
# Production entry points
__all__ = [
'VeilOmegaEnterpriseEngine',
'EnterpriseLLMEnhancementEngine',
'MultiProviderOrchestrator',
'AbsoluteTruthValidator',
'QuantumEntanglementEngine',
'initialize_enterprise_system',
'Provider',
'Domain',
'VerificationLevel',
'GrowthStage',
'LLMEnhancement',
'AbsoluteValidation'
]
if __name__ == "__main__":
# Run enterprise demonstration
asyncio.run(enterprise_demonstration())