SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vazish/all-MiniLM-L6-v2-fine-tuned_0")
# Run inference
sentences = [
'Tidal - High-Fidelity Music Streaming with Master Quality Audio',
'Walmart - Everyday Low Prices on Groceries, Electronics, and More',
'Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.9823 |
| spearman_cosine | 0.2608 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 49,800 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 10 tokens
- mean: 14.76 tokens
- max: 21 tokens
- min: 10 tokens
- mean: 14.64 tokens
- max: 21 tokens
- min: 0.0
- mean: 0.04
- max: 1.0
- Samples:
sentence_0 sentence_1 label TripAdvisor - Hotel Reviews, Photos, and Travel ForumsDocker Hub - Container Image Repository for DevOps Environments0.0Mastodon - Decentralized Social Media for Niche CommunitiesAllrecipes - User-Submitted Recipes, Reviews, and Cooking Tips0.0YouTube Music - Music Videos, Official Albums, and Live PerformancesESPN - Sports News, Live Scores, Stats, and Highlights0.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 32per_device_eval_batch_size: 32multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | spearman_cosine |
|---|---|---|---|
| 0.0372 | 500 | 0.0218 | - |
| 0.0745 | 1000 | 0.0151 | - |
| 0.1117 | 1500 | 0.0113 | - |
| 0.1490 | 2000 | 0.0076 | - |
| 0.1862 | 2500 | 0.0063 | - |
| 0.2234 | 3000 | 0.0054 | - |
| 0.2607 | 3500 | 0.0045 | - |
| 0.2979 | 4000 | 0.0041 | - |
| 0.3351 | 4500 | 0.0027 | - |
| 0.3724 | 5000 | 0.0028 | - |
| 0.4096 | 5500 | 0.0026 | - |
| 0.4469 | 6000 | 0.0021 | - |
| 0.4841 | 6500 | 0.0019 | - |
| 0.5213 | 7000 | 0.0022 | - |
| 0.5586 | 7500 | 0.0017 | - |
| 0.5958 | 8000 | 0.0018 | - |
| 0.6331 | 8500 | 0.0015 | - |
| 0.6703 | 9000 | 0.0015 | - |
| 0.7075 | 9500 | 0.0018 | - |
| 0.7448 | 10000 | 0.0014 | - |
| 0.7820 | 10500 | 0.0017 | - |
| 0.8192 | 11000 | 0.0012 | - |
| 0.8565 | 11500 | 0.0014 | - |
| 0.8937 | 12000 | 0.001 | - |
| 0.9310 | 12500 | 0.0011 | - |
| 0.9682 | 13000 | 0.001 | - |
| 1.0054 | 13500 | 0.0009 | - |
| 1.0427 | 14000 | 0.0011 | - |
| 1.0799 | 14500 | 0.001 | - |
| 1.1172 | 15000 | 0.0009 | - |
| 1.1544 | 15500 | 0.0008 | - |
| 1.1916 | 16000 | 0.001 | - |
| 1.2289 | 16500 | 0.0011 | - |
| 1.2661 | 17000 | 0.0011 | - |
| 1.3033 | 17500 | 0.0006 | - |
| 1.3406 | 18000 | 0.0011 | - |
| 1.3778 | 18500 | 0.0008 | - |
| 1.4151 | 19000 | 0.0011 | - |
| 1.4523 | 19500 | 0.0009 | - |
| 1.4895 | 20000 | 0.0011 | - |
| 1.5268 | 20500 | 0.0009 | - |
| 1.5640 | 21000 | 0.0009 | - |
| 1.6013 | 21500 | 0.0008 | - |
| 1.6385 | 22000 | 0.0005 | - |
| 1.6757 | 22500 | 0.001 | - |
| 1.7130 | 23000 | 0.0008 | - |
| 1.7502 | 23500 | 0.0007 | - |
| 1.7874 | 24000 | 0.0007 | - |
| 1.8247 | 24500 | 0.0008 | - |
| 1.8619 | 25000 | 0.001 | - |
| 1.8992 | 25500 | 0.0009 | - |
| 1.9364 | 26000 | 0.0008 | - |
| 1.9736 | 26500 | 0.0009 | - |
| 2.0109 | 27000 | 0.0007 | - |
| 2.0481 | 27500 | 0.0006 | - |
| 2.0854 | 28000 | 0.0007 | - |
| 2.1226 | 28500 | 0.0006 | - |
| 2.1598 | 29000 | 0.0007 | - |
| 2.1971 | 29500 | 0.001 | - |
| 2.2343 | 30000 | 0.0006 | - |
| 2.2715 | 30500 | 0.0006 | - |
| 2.3088 | 31000 | 0.001 | - |
| 2.3460 | 31500 | 0.0007 | - |
| 2.3833 | 32000 | 0.0008 | - |
| 2.4205 | 32500 | 0.0006 | - |
| 2.4577 | 33000 | 0.0007 | - |
| 2.4950 | 33500 | 0.0007 | - |
| 2.5322 | 34000 | 0.001 | - |
| 2.5694 | 34500 | 0.0007 | - |
| 2.6067 | 35000 | 0.0007 | - |
| 2.6439 | 35500 | 0.0008 | - |
| 2.6812 | 36000 | 0.0007 | - |
| 2.7184 | 36500 | 0.0006 | - |
| 2.7556 | 37000 | 0.0007 | - |
| 2.7929 | 37500 | 0.0007 | - |
| 2.8301 | 38000 | 0.0005 | - |
| 2.8674 | 38500 | 0.0009 | - |
| 2.9046 | 39000 | 0.0006 | - |
| 2.9418 | 39500 | 0.0007 | - |
| 2.9791 | 40000 | 0.0008 | - |
| -1 | -1 | - | 0.2608 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
Model tree for vazish/all-MiniLM-L6-v2-fine-tuned
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on Unknownself-reported0.982
- Spearman Cosine on Unknownself-reported0.261