Mistral 7B MedQuAD (LoRA r=32)
Training configuration
- Epochs: 1
- Batch size: 1
- Gradient accumulation: 4
- Learning rate: 2e-4
- Optimizer: paged_adamw_8bit
- Quantization: 4-bit (bitsandbytes)
Training Summary
| Step | Training Loss | Validation Loss | Mean Token Accuracy |
|---|---|---|---|
| 20 | 1.1077 | 1.0624 | 0.7329 |
| 100 | 0.7190 | 0.8991 | 0.7721 |
| 200 | 0.9566 | 0.8750 | 0.7758 |
| 300 | 0.9045 | 0.8575 | 0.7783 |
| 400 | 1.0345 | 0.8418 | 0.7806 |
| 500 | 0.9336 | 0.8355 | 0.7817 |
Final metrics
- Final Training Loss: 0.90
- Final Validation Loss: 0.84
- Final Mean Token Accuracy: 0.78
- Epochs: 1
- Total Steps: 500
Model fine-tuned on the MedQuAD dataset for medical QA using PEFT + QLoRA with rank = 32.
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for vlachner/mistral-medquad-r32
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3