Commit
·
93533d4
0
Parent(s):
Initial commit
Browse files- .gitattributes +16 -0
- README.md +181 -0
- config.json +76 -0
- feature_extractor_config.json +9 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: zh
|
| 3 |
+
datasets:
|
| 4 |
+
- common_voice
|
| 5 |
+
tags:
|
| 6 |
+
- speech
|
| 7 |
+
- audio
|
| 8 |
+
- automatic-speech-recognition
|
| 9 |
+
- xlsr_fine_tuning_week
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
## Colab trial with recording or voice file
|
| 14 |
+
[Colab trial](https://colab.research.google.com/drive/1e_z5jQHYbO2YKEaUgzb1ww1WwiAyydAj?usp=sharing)
|
| 15 |
+
|
| 16 |
+
```
|
| 17 |
+
import torchaudio
|
| 18 |
+
from datasets import load_dataset, load_metric
|
| 19 |
+
from transformers import (
|
| 20 |
+
Wav2Vec2ForCTC,
|
| 21 |
+
Wav2Vec2Processor,
|
| 22 |
+
)
|
| 23 |
+
import torch
|
| 24 |
+
import re
|
| 25 |
+
import sys
|
| 26 |
+
|
| 27 |
+
model_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
| 28 |
+
device = "cuda"
|
| 29 |
+
processor_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
| 30 |
+
|
| 31 |
+
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
|
| 32 |
+
|
| 33 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
|
| 34 |
+
processor = Wav2Vec2Processor.from_pretrained(processor_name)
|
| 35 |
+
|
| 36 |
+
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
|
| 37 |
+
|
| 38 |
+
def load_file_to_data(file):
|
| 39 |
+
batch = {}
|
| 40 |
+
speech, _ = torchaudio.load(file)
|
| 41 |
+
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
|
| 42 |
+
batch["sampling_rate"] = resampler.new_freq
|
| 43 |
+
return batch
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def predict(data):
|
| 47 |
+
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
|
| 48 |
+
input_values = features.input_values.to(device)
|
| 49 |
+
attention_mask = features.attention_mask.to(device)
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
| 52 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 53 |
+
return processor.batch_decode(pred_ids)
|
| 54 |
+
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
Predict
|
| 58 |
+
```python
|
| 59 |
+
predict(load_file_to_data('voice file path'))
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
## Evaluation on Common Voice TW Test
|
| 63 |
+
```python
|
| 64 |
+
import torchaudio
|
| 65 |
+
from datasets import load_dataset, load_metric
|
| 66 |
+
from transformers import (
|
| 67 |
+
Wav2Vec2ForCTC,
|
| 68 |
+
Wav2Vec2Processor,
|
| 69 |
+
)
|
| 70 |
+
import torch
|
| 71 |
+
import re
|
| 72 |
+
|
| 73 |
+
model_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
| 74 |
+
device = "cuda"
|
| 75 |
+
processor_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
| 76 |
+
|
| 77 |
+
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
|
| 78 |
+
|
| 79 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
|
| 80 |
+
processor = Wav2Vec2Processor.from_pretrained(processor_name)
|
| 81 |
+
|
| 82 |
+
ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test")
|
| 83 |
+
|
| 84 |
+
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
|
| 85 |
+
|
| 86 |
+
def map_to_array(batch):
|
| 87 |
+
speech, _ = torchaudio.load(batch["path"])
|
| 88 |
+
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
|
| 89 |
+
batch["sampling_rate"] = resampler.new_freq
|
| 90 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
|
| 91 |
+
return batch
|
| 92 |
+
|
| 93 |
+
ds = ds.map(map_to_array)
|
| 94 |
+
|
| 95 |
+
def map_to_pred(batch):
|
| 96 |
+
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
|
| 97 |
+
input_values = features.input_values.to(device)
|
| 98 |
+
attention_mask = features.attention_mask.to(device)
|
| 99 |
+
with torch.no_grad():
|
| 100 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
| 101 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 102 |
+
batch["predicted"] = processor.batch_decode(pred_ids)
|
| 103 |
+
batch["target"] = batch["sentence"]
|
| 104 |
+
return batch
|
| 105 |
+
|
| 106 |
+
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
|
| 107 |
+
|
| 108 |
+
wer = load_metric("wer")
|
| 109 |
+
|
| 110 |
+
print(wer.compute(predictions=result["predicted"], references=result["target"]))
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
`CER: 0.8635578583765112`
|
| 114 |
+
|
| 115 |
+
Inference with GPT LM:
|
| 116 |
+
```python
|
| 117 |
+
import torchaudio
|
| 118 |
+
from datasets import load_dataset, load_metric
|
| 119 |
+
from transformers import (
|
| 120 |
+
Wav2Vec2ForCTC,
|
| 121 |
+
Wav2Vec2Processor,
|
| 122 |
+
)
|
| 123 |
+
import torch
|
| 124 |
+
import re
|
| 125 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
| 126 |
+
|
| 127 |
+
model_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
| 128 |
+
device = "cuda"
|
| 129 |
+
processor_name = "voidful/wav2vec2-large-xlsr-53-tw"
|
| 130 |
+
|
| 131 |
+
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞���〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
|
| 132 |
+
|
| 133 |
+
tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese")
|
| 134 |
+
gpt_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device)
|
| 135 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
|
| 136 |
+
processor = Wav2Vec2Processor.from_pretrained(processor_name)
|
| 137 |
+
|
| 138 |
+
ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test")
|
| 139 |
+
|
| 140 |
+
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
|
| 141 |
+
|
| 142 |
+
def map_to_array(batch):
|
| 143 |
+
speech, _ = torchaudio.load(batch["path"])
|
| 144 |
+
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
|
| 145 |
+
batch["sampling_rate"] = resampler.new_freq
|
| 146 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
|
| 147 |
+
return batch
|
| 148 |
+
|
| 149 |
+
ds = ds.map(map_to_array)
|
| 150 |
+
|
| 151 |
+
def map_to_pred(batch):
|
| 152 |
+
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
|
| 153 |
+
input_values = features.input_values.to(device)
|
| 154 |
+
attention_mask = features.attention_mask.to(device)
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
| 157 |
+
|
| 158 |
+
decoded_results = []
|
| 159 |
+
for logit in logits:
|
| 160 |
+
pred_ids = torch.argmax(logit, dim=-1)
|
| 161 |
+
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size())
|
| 162 |
+
vocab_size = logit.size()[-1]
|
| 163 |
+
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
|
| 164 |
+
gpt_input = torch.cat((torch.tensor([tokenizer.cls_token_id]).to(device),pred_ids[pred_ids>0]), 0)
|
| 165 |
+
gpt_prob = torch.nn.functional.softmax(gpt_model(gpt_input).logits, dim=-1)[:voice_prob.size()[0],:]
|
| 166 |
+
comb_pred_ids = torch.argmax(gpt_prob*voice_prob, dim=-1)
|
| 167 |
+
decoded_results.append(processor.decode(comb_pred_ids))
|
| 168 |
+
|
| 169 |
+
batch["predicted"] = decoded_results
|
| 170 |
+
batch["target"] = batch["sentence"]
|
| 171 |
+
return batch
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
|
| 175 |
+
|
| 176 |
+
wer = load_metric("wer")
|
| 177 |
+
|
| 178 |
+
print(wer.compute(predictions=result["predicted"], references=result["target"]))
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
`CER 0.7927461139896373`
|
config.json
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"apply_spec_augment": true,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"Wav2Vec2ForCTC"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.1,
|
| 9 |
+
"bos_token_id": 1,
|
| 10 |
+
"conv_bias": true,
|
| 11 |
+
"conv_dim": [
|
| 12 |
+
512,
|
| 13 |
+
512,
|
| 14 |
+
512,
|
| 15 |
+
512,
|
| 16 |
+
512,
|
| 17 |
+
512,
|
| 18 |
+
512
|
| 19 |
+
],
|
| 20 |
+
"conv_kernel": [
|
| 21 |
+
10,
|
| 22 |
+
3,
|
| 23 |
+
3,
|
| 24 |
+
3,
|
| 25 |
+
3,
|
| 26 |
+
2,
|
| 27 |
+
2
|
| 28 |
+
],
|
| 29 |
+
"conv_stride": [
|
| 30 |
+
5,
|
| 31 |
+
2,
|
| 32 |
+
2,
|
| 33 |
+
2,
|
| 34 |
+
2,
|
| 35 |
+
2,
|
| 36 |
+
2
|
| 37 |
+
],
|
| 38 |
+
"ctc_loss_reduction": "mean",
|
| 39 |
+
"ctc_zero_infinity": false,
|
| 40 |
+
"do_stable_layer_norm": true,
|
| 41 |
+
"eos_token_id": 2,
|
| 42 |
+
"feat_extract_activation": "gelu",
|
| 43 |
+
"feat_extract_dropout": 0.0,
|
| 44 |
+
"feat_extract_norm": "layer",
|
| 45 |
+
"feat_proj_dropout": 0.0,
|
| 46 |
+
"final_dropout": 0.0,
|
| 47 |
+
"gradient_checkpointing": true,
|
| 48 |
+
"hidden_act": "gelu",
|
| 49 |
+
"hidden_dropout": 0.1,
|
| 50 |
+
"hidden_size": 1024,
|
| 51 |
+
"initializer_range": 0.02,
|
| 52 |
+
"intermediate_size": 4096,
|
| 53 |
+
"layer_norm_eps": 1e-05,
|
| 54 |
+
"layerdrop": 0.1,
|
| 55 |
+
"mask_channel_length": 10,
|
| 56 |
+
"mask_channel_min_space": 1,
|
| 57 |
+
"mask_channel_other": 0.0,
|
| 58 |
+
"mask_channel_prob": 0.0,
|
| 59 |
+
"mask_channel_selection": "static",
|
| 60 |
+
"mask_feature_length": 10,
|
| 61 |
+
"mask_feature_prob": 0.0,
|
| 62 |
+
"mask_time_length": 10,
|
| 63 |
+
"mask_time_min_space": 1,
|
| 64 |
+
"mask_time_other": 0.0,
|
| 65 |
+
"mask_time_prob": 0.05,
|
| 66 |
+
"mask_time_selection": "static",
|
| 67 |
+
"model_type": "wav2vec2",
|
| 68 |
+
"num_attention_heads": 16,
|
| 69 |
+
"num_conv_pos_embedding_groups": 16,
|
| 70 |
+
"num_conv_pos_embeddings": 128,
|
| 71 |
+
"num_feat_extract_layers": 7,
|
| 72 |
+
"num_hidden_layers": 24,
|
| 73 |
+
"pad_token_id": 0,
|
| 74 |
+
"transformers_version": "4.4.0.dev0",
|
| 75 |
+
"vocab_size": 21128
|
| 76 |
+
}
|
feature_extractor_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"feature_size": 1,
|
| 4 |
+
"padding_side": "right",
|
| 5 |
+
"padding_value": 0.0,
|
| 6 |
+
"return_attention_mask": true,
|
| 7 |
+
"sampling_rate": 16000
|
| 8 |
+
}
|
| 9 |
+
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"feature_size": 1,
|
| 4 |
+
"padding_side": "right",
|
| 5 |
+
"padding_value": 0.0,
|
| 6 |
+
"return_attention_mask": true,
|
| 7 |
+
"sampling_rate": 16000
|
| 8 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:80b6393d293991d01b78ee9219ad2a32d65cb30f33433491a795de7879322b8a
|
| 3 |
+
size 1348554373
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "bos_token": null, "eos_token": null, "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|