--- license: apache-2.0 --- ONNX format of voxreality/src_ctx_aware_nllb_600M model Model inference example: ```python from optimum.onnxruntime import ORTModelForSeq2SeqLM from transformers import AutoTokenizer,pipeline model_path = 'voxreality/src_ctx_aware_nllb_600M_onnx' model = ORTModelForSeq2SeqLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) max_length = 100 src_lang = 'eng_Latn' tgt_lang = 'deu_Latn' context_text = 'This is an optional context sentence.' sentence_text = 'Text to be translated.' # If the context is provided input_text = f'{context_text} {tokenizer.sep_token} {sentence_text}' # If no context is provided, you can use just the sentence_text as input # input_text = sentence_text tokenizer.src_lang = src_lang inputs = tokenizer(input_text, return_tensors='pt') input = inputs.to('cpu') forced_bos_token_id = tokenizer.lang_code_to_id[tgt_lang] output = model.generate( **inputs, forced_bos_token_id=forced_bos_token_id, max_length=max_length ) output_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0] print(output_text) ```