Update pipeline.py
Browse files- pipeline.py +545 -237
pipeline.py
CHANGED
|
@@ -1,39 +1,30 @@
|
|
| 1 |
import inspect
|
| 2 |
import re
|
| 3 |
-
from typing import Callable, List, Optional, Union
|
| 4 |
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
import torch
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
from diffusers import
|
|
|
|
| 11 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 12 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
| 13 |
-
from diffusers.
|
| 14 |
-
from
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
"bilinear": PIL.Image.Resampling.BILINEAR,
|
| 25 |
-
"bicubic": PIL.Image.Resampling.BICUBIC,
|
| 26 |
-
"lanczos": PIL.Image.Resampling.LANCZOS,
|
| 27 |
-
"nearest": PIL.Image.Resampling.NEAREST,
|
| 28 |
-
}
|
| 29 |
-
else:
|
| 30 |
-
PIL_INTERPOLATION = {
|
| 31 |
-
"linear": PIL.Image.LINEAR,
|
| 32 |
-
"bilinear": PIL.Image.BILINEAR,
|
| 33 |
-
"bicubic": PIL.Image.BICUBIC,
|
| 34 |
-
"lanczos": PIL.Image.LANCZOS,
|
| 35 |
-
"nearest": PIL.Image.NEAREST,
|
| 36 |
-
}
|
| 37 |
# ------------------------------------------------------------------------------
|
| 38 |
|
| 39 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
@@ -144,7 +135,7 @@ def parse_prompt_attention(text):
|
|
| 144 |
return res
|
| 145 |
|
| 146 |
|
| 147 |
-
def get_prompts_with_weights(pipe:
|
| 148 |
r"""
|
| 149 |
Tokenize a list of prompts and return its tokens with weights of each token.
|
| 150 |
|
|
@@ -179,14 +170,14 @@ def get_prompts_with_weights(pipe: StableDiffusionPipeline, prompt: List[str], m
|
|
| 179 |
return tokens, weights
|
| 180 |
|
| 181 |
|
| 182 |
-
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77):
|
| 183 |
r"""
|
| 184 |
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
|
| 185 |
"""
|
| 186 |
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
|
| 187 |
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
|
| 188 |
for i in range(len(tokens)):
|
| 189 |
-
tokens[i] = [bos] + tokens[i] + [
|
| 190 |
if no_boseos_middle:
|
| 191 |
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
|
| 192 |
else:
|
|
@@ -205,7 +196,7 @@ def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_midd
|
|
| 205 |
|
| 206 |
|
| 207 |
def get_unweighted_text_embeddings(
|
| 208 |
-
pipe:
|
| 209 |
text_input: torch.Tensor,
|
| 210 |
chunk_length: int,
|
| 211 |
no_boseos_middle: Optional[bool] = True,
|
|
@@ -245,14 +236,13 @@ def get_unweighted_text_embeddings(
|
|
| 245 |
|
| 246 |
|
| 247 |
def get_weighted_text_embeddings(
|
| 248 |
-
pipe:
|
| 249 |
prompt: Union[str, List[str]],
|
| 250 |
uncond_prompt: Optional[Union[str, List[str]]] = None,
|
| 251 |
max_embeddings_multiples: Optional[int] = 3,
|
| 252 |
no_boseos_middle: Optional[bool] = False,
|
| 253 |
skip_parsing: Optional[bool] = False,
|
| 254 |
skip_weighting: Optional[bool] = False,
|
| 255 |
-
**kwargs,
|
| 256 |
):
|
| 257 |
r"""
|
| 258 |
Prompts can be assigned with local weights using brackets. For example,
|
|
@@ -262,7 +252,7 @@ def get_weighted_text_embeddings(
|
|
| 262 |
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
| 263 |
|
| 264 |
Args:
|
| 265 |
-
pipe (`
|
| 266 |
Pipe to provide access to the tokenizer and the text encoder.
|
| 267 |
prompt (`str` or `List[str]`):
|
| 268 |
The prompt or prompts to guide the image generation.
|
|
@@ -318,12 +308,14 @@ def get_weighted_text_embeddings(
|
|
| 318 |
# pad the length of tokens and weights
|
| 319 |
bos = pipe.tokenizer.bos_token_id
|
| 320 |
eos = pipe.tokenizer.eos_token_id
|
|
|
|
| 321 |
prompt_tokens, prompt_weights = pad_tokens_and_weights(
|
| 322 |
prompt_tokens,
|
| 323 |
prompt_weights,
|
| 324 |
max_length,
|
| 325 |
bos,
|
| 326 |
eos,
|
|
|
|
| 327 |
no_boseos_middle=no_boseos_middle,
|
| 328 |
chunk_length=pipe.tokenizer.model_max_length,
|
| 329 |
)
|
|
@@ -335,6 +327,7 @@ def get_weighted_text_embeddings(
|
|
| 335 |
max_length,
|
| 336 |
bos,
|
| 337 |
eos,
|
|
|
|
| 338 |
no_boseos_middle=no_boseos_middle,
|
| 339 |
chunk_length=pipe.tokenizer.model_max_length,
|
| 340 |
)
|
|
@@ -375,30 +368,50 @@ def get_weighted_text_embeddings(
|
|
| 375 |
return text_embeddings, None
|
| 376 |
|
| 377 |
|
| 378 |
-
def preprocess_image(image):
|
| 379 |
w, h = image.size
|
| 380 |
-
w, h =
|
| 381 |
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
|
| 382 |
image = np.array(image).astype(np.float32) / 255.0
|
| 383 |
-
image = image[None].transpose(0, 3, 1, 2)
|
| 384 |
image = torch.from_numpy(image)
|
| 385 |
return 2.0 * image - 1.0
|
| 386 |
|
| 387 |
|
| 388 |
-
def preprocess_mask(mask, scale_factor=8):
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
|
| 401 |
-
class StableDiffusionLongPromptWeightingPipeline(
|
|
|
|
|
|
|
| 402 |
r"""
|
| 403 |
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
| 404 |
weighting in prompt.
|
|
@@ -423,70 +436,200 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 423 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
| 424 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
| 425 |
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
| 426 |
-
feature_extractor ([`
|
| 427 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 428 |
"""
|
| 429 |
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
scheduler
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
)
|
| 453 |
-
self.__init__additional__()
|
| 454 |
|
| 455 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
unet
|
| 472 |
-
scheduler=scheduler,
|
| 473 |
-
safety_checker=safety_checker,
|
| 474 |
-
feature_extractor=feature_extractor,
|
| 475 |
)
|
| 476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
|
| 478 |
-
def
|
| 479 |
-
|
| 480 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
|
| 482 |
@property
|
|
|
|
| 483 |
def _execution_device(self):
|
| 484 |
r"""
|
| 485 |
Returns the device on which the pipeline's models will be executed. After calling
|
| 486 |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
| 487 |
hooks.
|
| 488 |
"""
|
| 489 |
-
if
|
| 490 |
return self.device
|
| 491 |
for module in self.unet.modules():
|
| 492 |
if (
|
|
@@ -503,8 +646,10 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 503 |
device,
|
| 504 |
num_images_per_prompt,
|
| 505 |
do_classifier_free_guidance,
|
| 506 |
-
negative_prompt,
|
| 507 |
-
max_embeddings_multiples,
|
|
|
|
|
|
|
| 508 |
):
|
| 509 |
r"""
|
| 510 |
Encodes the prompt into text encoder hidden states.
|
|
@@ -524,47 +669,71 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 524 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 525 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 526 |
"""
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
max_embeddings_multiples=max_embeddings_multiples,
|
| 545 |
-
)
|
| 546 |
-
bs_embed, seq_len, _ = text_embeddings.shape
|
| 547 |
-
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
| 548 |
-
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 549 |
|
| 550 |
if do_classifier_free_guidance:
|
| 551 |
-
bs_embed, seq_len, _ =
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
|
| 556 |
-
return
|
| 557 |
|
| 558 |
-
def check_inputs(
|
| 559 |
-
|
| 560 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
|
| 562 |
if strength < 0 or strength > 1:
|
| 563 |
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
| 564 |
|
| 565 |
-
if height % 8 != 0 or width % 8 != 0:
|
| 566 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 567 |
-
|
| 568 |
if (callback_steps is None) or (
|
| 569 |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 570 |
):
|
|
@@ -573,17 +742,42 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 573 |
f" {type(callback_steps)}."
|
| 574 |
)
|
| 575 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
def get_timesteps(self, num_inference_steps, strength, device, is_text2img):
|
| 577 |
if is_text2img:
|
| 578 |
return self.scheduler.timesteps.to(device), num_inference_steps
|
| 579 |
else:
|
| 580 |
# get the original timestep using init_timestep
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
|
|
|
| 584 |
|
| 585 |
-
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
| 586 |
-
timesteps = self.scheduler.timesteps[t_start:].to(device)
|
| 587 |
return timesteps, num_inference_steps - t_start
|
| 588 |
|
| 589 |
def run_safety_checker(self, image, device, dtype):
|
|
@@ -597,10 +791,10 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 597 |
return image, has_nsfw_concept
|
| 598 |
|
| 599 |
def decode_latents(self, latents):
|
| 600 |
-
latents = 1 /
|
| 601 |
image = self.vae.decode(latents).sample
|
| 602 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 603 |
-
# we always cast to float32 as this does not cause significant overhead and is compatible with
|
| 604 |
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 605 |
return image
|
| 606 |
|
|
@@ -621,43 +815,51 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 621 |
extra_step_kwargs["generator"] = generator
|
| 622 |
return extra_step_kwargs
|
| 623 |
|
| 624 |
-
def prepare_latents(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 625 |
if image is None:
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
|
|
|
| 632 |
|
| 633 |
if latents is None:
|
| 634 |
-
|
| 635 |
-
# randn does not work reproducibly on mps
|
| 636 |
-
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
| 637 |
-
else:
|
| 638 |
-
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
| 639 |
else:
|
| 640 |
-
if latents.shape != shape:
|
| 641 |
-
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
| 642 |
latents = latents.to(device)
|
| 643 |
|
| 644 |
# scale the initial noise by the standard deviation required by the scheduler
|
| 645 |
latents = latents * self.scheduler.init_noise_sigma
|
| 646 |
return latents, None, None
|
| 647 |
else:
|
|
|
|
| 648 |
init_latent_dist = self.vae.encode(image).latent_dist
|
| 649 |
init_latents = init_latent_dist.sample(generator=generator)
|
| 650 |
-
init_latents =
|
| 651 |
-
|
|
|
|
|
|
|
| 652 |
init_latents_orig = init_latents
|
| 653 |
-
shape = init_latents.shape
|
| 654 |
|
| 655 |
# add noise to latents using the timesteps
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
noise = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
| 660 |
-
latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
| 661 |
return latents, init_latents_orig, noise
|
| 662 |
|
| 663 |
@torch.no_grad()
|
|
@@ -673,16 +875,19 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 673 |
guidance_scale: float = 7.5,
|
| 674 |
strength: float = 0.8,
|
| 675 |
num_images_per_prompt: Optional[int] = 1,
|
|
|
|
| 676 |
eta: float = 0.0,
|
| 677 |
-
generator: Optional[torch.Generator] = None,
|
| 678 |
latents: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
| 679 |
max_embeddings_multiples: Optional[int] = 3,
|
| 680 |
output_type: Optional[str] = "pil",
|
| 681 |
return_dict: bool = True,
|
| 682 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 683 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 684 |
-
callback_steps:
|
| 685 |
-
|
| 686 |
):
|
| 687 |
r"""
|
| 688 |
Function invoked when calling the pipeline for generation.
|
|
@@ -722,16 +927,26 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 722 |
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
| 723 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 724 |
The number of images to generate per prompt.
|
|
|
|
|
|
|
|
|
|
| 725 |
eta (`float`, *optional*, defaults to 0.0):
|
| 726 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 727 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 728 |
-
generator (`torch.Generator`, *optional*):
|
| 729 |
-
|
| 730 |
-
deterministic.
|
| 731 |
latents (`torch.FloatTensor`, *optional*):
|
| 732 |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 733 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 734 |
tensor will ge generated by sampling using the supplied random `generator`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 735 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 736 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 737 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
@@ -749,6 +964,10 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 749 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 750 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 751 |
called at every step.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 752 |
|
| 753 |
Returns:
|
| 754 |
`None` if cancelled by `is_cancelled_callback`,
|
|
@@ -758,19 +977,23 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 758 |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 759 |
(nsfw) content, according to the `safety_checker`.
|
| 760 |
"""
|
| 761 |
-
message = "Please use `image` instead of `init_image`."
|
| 762 |
-
init_image = deprecate("init_image", "0.12.0", message, take_from=kwargs)
|
| 763 |
-
image = init_image or image
|
| 764 |
-
|
| 765 |
# 0. Default height and width to unet
|
| 766 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 767 |
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 768 |
|
| 769 |
# 1. Check inputs. Raise error if not correct
|
| 770 |
-
self.check_inputs(
|
|
|
|
|
|
|
| 771 |
|
| 772 |
# 2. Define call parameters
|
| 773 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 774 |
device = self._execution_device
|
| 775 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 776 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
@@ -778,26 +1001,28 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 778 |
do_classifier_free_guidance = guidance_scale > 1.0
|
| 779 |
|
| 780 |
# 3. Encode input prompt
|
| 781 |
-
|
| 782 |
prompt,
|
| 783 |
device,
|
| 784 |
num_images_per_prompt,
|
| 785 |
do_classifier_free_guidance,
|
| 786 |
negative_prompt,
|
| 787 |
max_embeddings_multiples,
|
|
|
|
|
|
|
| 788 |
)
|
| 789 |
-
dtype =
|
| 790 |
|
| 791 |
# 4. Preprocess image and mask
|
| 792 |
if isinstance(image, PIL.Image.Image):
|
| 793 |
-
image = preprocess_image(image)
|
| 794 |
if image is not None:
|
| 795 |
image = image.to(device=self.device, dtype=dtype)
|
| 796 |
if isinstance(mask_image, PIL.Image.Image):
|
| 797 |
-
mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
|
| 798 |
if mask_image is not None:
|
| 799 |
mask = mask_image.to(device=self.device, dtype=dtype)
|
| 800 |
-
mask = torch.cat([mask] *
|
| 801 |
else:
|
| 802 |
mask = None
|
| 803 |
|
|
@@ -810,7 +1035,9 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 810 |
latents, init_latents_orig, noise = self.prepare_latents(
|
| 811 |
image,
|
| 812 |
latent_timestep,
|
| 813 |
-
|
|
|
|
|
|
|
| 814 |
height,
|
| 815 |
width,
|
| 816 |
dtype,
|
|
@@ -823,43 +1050,70 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 823 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 824 |
|
| 825 |
# 8. Denoising loop
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
if
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 862 |
image = self.numpy_to_pil(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 863 |
|
| 864 |
if not return_dict:
|
| 865 |
return image, has_nsfw_concept
|
|
@@ -876,15 +1130,17 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 876 |
guidance_scale: float = 7.5,
|
| 877 |
num_images_per_prompt: Optional[int] = 1,
|
| 878 |
eta: float = 0.0,
|
| 879 |
-
generator: Optional[torch.Generator] = None,
|
| 880 |
latents: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
| 881 |
max_embeddings_multiples: Optional[int] = 3,
|
| 882 |
output_type: Optional[str] = "pil",
|
| 883 |
return_dict: bool = True,
|
| 884 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 885 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 886 |
-
callback_steps:
|
| 887 |
-
|
| 888 |
):
|
| 889 |
r"""
|
| 890 |
Function for text-to-image generation.
|
|
@@ -912,13 +1168,20 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 912 |
eta (`float`, *optional*, defaults to 0.0):
|
| 913 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 914 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 915 |
-
generator (`torch.Generator`, *optional*):
|
| 916 |
-
|
| 917 |
-
deterministic.
|
| 918 |
latents (`torch.FloatTensor`, *optional*):
|
| 919 |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 920 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 921 |
tensor will ge generated by sampling using the supplied random `generator`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 922 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 923 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 924 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
@@ -936,7 +1199,13 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 936 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 937 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 938 |
called at every step.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 939 |
Returns:
|
|
|
|
| 940 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 941 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 942 |
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
@@ -954,13 +1223,15 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 954 |
eta=eta,
|
| 955 |
generator=generator,
|
| 956 |
latents=latents,
|
|
|
|
|
|
|
| 957 |
max_embeddings_multiples=max_embeddings_multiples,
|
| 958 |
output_type=output_type,
|
| 959 |
return_dict=return_dict,
|
| 960 |
callback=callback,
|
| 961 |
is_cancelled_callback=is_cancelled_callback,
|
| 962 |
callback_steps=callback_steps,
|
| 963 |
-
|
| 964 |
)
|
| 965 |
|
| 966 |
def img2img(
|
|
@@ -973,14 +1244,16 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 973 |
guidance_scale: Optional[float] = 7.5,
|
| 974 |
num_images_per_prompt: Optional[int] = 1,
|
| 975 |
eta: Optional[float] = 0.0,
|
| 976 |
-
generator: Optional[torch.Generator] = None,
|
|
|
|
|
|
|
| 977 |
max_embeddings_multiples: Optional[int] = 3,
|
| 978 |
output_type: Optional[str] = "pil",
|
| 979 |
return_dict: bool = True,
|
| 980 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 981 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 982 |
-
callback_steps:
|
| 983 |
-
|
| 984 |
):
|
| 985 |
r"""
|
| 986 |
Function for image-to-image generation.
|
|
@@ -1013,9 +1286,16 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 1013 |
eta (`float`, *optional*, defaults to 0.0):
|
| 1014 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 1015 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 1016 |
-
generator (`torch.Generator`, *optional*):
|
| 1017 |
-
|
| 1018 |
-
deterministic.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1019 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 1020 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 1021 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
@@ -1033,8 +1313,13 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 1033 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 1034 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1035 |
called at every step.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1036 |
Returns:
|
| 1037 |
-
|
| 1038 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 1039 |
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 1040 |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
@@ -1050,13 +1335,15 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 1050 |
num_images_per_prompt=num_images_per_prompt,
|
| 1051 |
eta=eta,
|
| 1052 |
generator=generator,
|
|
|
|
|
|
|
| 1053 |
max_embeddings_multiples=max_embeddings_multiples,
|
| 1054 |
output_type=output_type,
|
| 1055 |
return_dict=return_dict,
|
| 1056 |
callback=callback,
|
| 1057 |
is_cancelled_callback=is_cancelled_callback,
|
| 1058 |
callback_steps=callback_steps,
|
| 1059 |
-
|
| 1060 |
)
|
| 1061 |
|
| 1062 |
def inpaint(
|
|
@@ -1069,15 +1356,18 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 1069 |
num_inference_steps: Optional[int] = 50,
|
| 1070 |
guidance_scale: Optional[float] = 7.5,
|
| 1071 |
num_images_per_prompt: Optional[int] = 1,
|
|
|
|
| 1072 |
eta: Optional[float] = 0.0,
|
| 1073 |
-
generator: Optional[torch.Generator] = None,
|
|
|
|
|
|
|
| 1074 |
max_embeddings_multiples: Optional[int] = 3,
|
| 1075 |
output_type: Optional[str] = "pil",
|
| 1076 |
return_dict: bool = True,
|
| 1077 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 1078 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 1079 |
-
callback_steps:
|
| 1080 |
-
|
| 1081 |
):
|
| 1082 |
r"""
|
| 1083 |
Function for inpaint.
|
|
@@ -1111,12 +1401,22 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 1111 |
usually at the expense of lower image quality.
|
| 1112 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1113 |
The number of images to generate per prompt.
|
|
|
|
|
|
|
|
|
|
| 1114 |
eta (`float`, *optional*, defaults to 0.0):
|
| 1115 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 1116 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 1117 |
-
generator (`torch.Generator`, *optional*):
|
| 1118 |
-
|
| 1119 |
-
deterministic.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1120 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 1121 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 1122 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
@@ -1134,8 +1434,13 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 1134 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 1135 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1136 |
called at every step.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1137 |
Returns:
|
| 1138 |
-
|
| 1139 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 1140 |
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 1141 |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
@@ -1150,13 +1455,16 @@ class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
|
| 1150 |
guidance_scale=guidance_scale,
|
| 1151 |
strength=strength,
|
| 1152 |
num_images_per_prompt=num_images_per_prompt,
|
|
|
|
| 1153 |
eta=eta,
|
| 1154 |
generator=generator,
|
|
|
|
|
|
|
| 1155 |
max_embeddings_multiples=max_embeddings_multiples,
|
| 1156 |
output_type=output_type,
|
| 1157 |
return_dict=return_dict,
|
| 1158 |
callback=callback,
|
| 1159 |
is_cancelled_callback=is_cancelled_callback,
|
| 1160 |
callback_steps=callback_steps,
|
| 1161 |
-
|
| 1162 |
)
|
|
|
|
| 1 |
import inspect
|
| 2 |
import re
|
| 3 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
+
import PIL
|
| 7 |
import torch
|
| 8 |
+
from packaging import version
|
| 9 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 10 |
|
| 11 |
+
from diffusers import DiffusionPipeline
|
| 12 |
+
from diffusers.configuration_utils import FrozenDict
|
| 13 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 14 |
+
from diffusers.loaders import FromCkptMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
| 15 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 16 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
| 17 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 18 |
+
from diffusers.utils import (
|
| 19 |
+
PIL_INTERPOLATION,
|
| 20 |
+
deprecate,
|
| 21 |
+
is_accelerate_available,
|
| 22 |
+
is_accelerate_version,
|
| 23 |
+
logging,
|
| 24 |
+
randn_tensor,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
# ------------------------------------------------------------------------------
|
| 29 |
|
| 30 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
| 135 |
return res
|
| 136 |
|
| 137 |
|
| 138 |
+
def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
|
| 139 |
r"""
|
| 140 |
Tokenize a list of prompts and return its tokens with weights of each token.
|
| 141 |
|
|
|
|
| 170 |
return tokens, weights
|
| 171 |
|
| 172 |
|
| 173 |
+
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77):
|
| 174 |
r"""
|
| 175 |
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
|
| 176 |
"""
|
| 177 |
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
|
| 178 |
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
|
| 179 |
for i in range(len(tokens)):
|
| 180 |
+
tokens[i] = [bos] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos]
|
| 181 |
if no_boseos_middle:
|
| 182 |
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
|
| 183 |
else:
|
|
|
|
| 196 |
|
| 197 |
|
| 198 |
def get_unweighted_text_embeddings(
|
| 199 |
+
pipe: DiffusionPipeline,
|
| 200 |
text_input: torch.Tensor,
|
| 201 |
chunk_length: int,
|
| 202 |
no_boseos_middle: Optional[bool] = True,
|
|
|
|
| 236 |
|
| 237 |
|
| 238 |
def get_weighted_text_embeddings(
|
| 239 |
+
pipe: DiffusionPipeline,
|
| 240 |
prompt: Union[str, List[str]],
|
| 241 |
uncond_prompt: Optional[Union[str, List[str]]] = None,
|
| 242 |
max_embeddings_multiples: Optional[int] = 3,
|
| 243 |
no_boseos_middle: Optional[bool] = False,
|
| 244 |
skip_parsing: Optional[bool] = False,
|
| 245 |
skip_weighting: Optional[bool] = False,
|
|
|
|
| 246 |
):
|
| 247 |
r"""
|
| 248 |
Prompts can be assigned with local weights using brackets. For example,
|
|
|
|
| 252 |
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
| 253 |
|
| 254 |
Args:
|
| 255 |
+
pipe (`DiffusionPipeline`):
|
| 256 |
Pipe to provide access to the tokenizer and the text encoder.
|
| 257 |
prompt (`str` or `List[str]`):
|
| 258 |
The prompt or prompts to guide the image generation.
|
|
|
|
| 308 |
# pad the length of tokens and weights
|
| 309 |
bos = pipe.tokenizer.bos_token_id
|
| 310 |
eos = pipe.tokenizer.eos_token_id
|
| 311 |
+
pad = getattr(pipe.tokenizer, "pad_token_id", eos)
|
| 312 |
prompt_tokens, prompt_weights = pad_tokens_and_weights(
|
| 313 |
prompt_tokens,
|
| 314 |
prompt_weights,
|
| 315 |
max_length,
|
| 316 |
bos,
|
| 317 |
eos,
|
| 318 |
+
pad,
|
| 319 |
no_boseos_middle=no_boseos_middle,
|
| 320 |
chunk_length=pipe.tokenizer.model_max_length,
|
| 321 |
)
|
|
|
|
| 327 |
max_length,
|
| 328 |
bos,
|
| 329 |
eos,
|
| 330 |
+
pad,
|
| 331 |
no_boseos_middle=no_boseos_middle,
|
| 332 |
chunk_length=pipe.tokenizer.model_max_length,
|
| 333 |
)
|
|
|
|
| 368 |
return text_embeddings, None
|
| 369 |
|
| 370 |
|
| 371 |
+
def preprocess_image(image, batch_size):
|
| 372 |
w, h = image.size
|
| 373 |
+
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
|
| 374 |
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
|
| 375 |
image = np.array(image).astype(np.float32) / 255.0
|
| 376 |
+
image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size)
|
| 377 |
image = torch.from_numpy(image)
|
| 378 |
return 2.0 * image - 1.0
|
| 379 |
|
| 380 |
|
| 381 |
+
def preprocess_mask(mask, batch_size, scale_factor=8):
|
| 382 |
+
if not isinstance(mask, torch.FloatTensor):
|
| 383 |
+
mask = mask.convert("L")
|
| 384 |
+
w, h = mask.size
|
| 385 |
+
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
|
| 386 |
+
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
|
| 387 |
+
mask = np.array(mask).astype(np.float32) / 255.0
|
| 388 |
+
mask = np.tile(mask, (4, 1, 1))
|
| 389 |
+
mask = np.vstack([mask[None]] * batch_size)
|
| 390 |
+
mask = 1 - mask # repaint white, keep black
|
| 391 |
+
mask = torch.from_numpy(mask)
|
| 392 |
+
return mask
|
| 393 |
+
|
| 394 |
+
else:
|
| 395 |
+
valid_mask_channel_sizes = [1, 3]
|
| 396 |
+
# if mask channel is fourth tensor dimension, permute dimensions to pytorch standard (B, C, H, W)
|
| 397 |
+
if mask.shape[3] in valid_mask_channel_sizes:
|
| 398 |
+
mask = mask.permute(0, 3, 1, 2)
|
| 399 |
+
elif mask.shape[1] not in valid_mask_channel_sizes:
|
| 400 |
+
raise ValueError(
|
| 401 |
+
f"Mask channel dimension of size in {valid_mask_channel_sizes} should be second or fourth dimension,"
|
| 402 |
+
f" but received mask of shape {tuple(mask.shape)}"
|
| 403 |
+
)
|
| 404 |
+
# (potentially) reduce mask channel dimension from 3 to 1 for broadcasting to latent shape
|
| 405 |
+
mask = mask.mean(dim=1, keepdim=True)
|
| 406 |
+
h, w = mask.shape[-2:]
|
| 407 |
+
h, w = (x - x % 8 for x in (h, w)) # resize to integer multiple of 8
|
| 408 |
+
mask = torch.nn.functional.interpolate(mask, (h // scale_factor, w // scale_factor))
|
| 409 |
+
return mask
|
| 410 |
|
| 411 |
|
| 412 |
+
class StableDiffusionLongPromptWeightingPipeline(
|
| 413 |
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromCkptMixin
|
| 414 |
+
):
|
| 415 |
r"""
|
| 416 |
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
| 417 |
weighting in prompt.
|
|
|
|
| 436 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
| 437 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
| 438 |
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
| 439 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
| 440 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 441 |
"""
|
| 442 |
|
| 443 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
| 444 |
+
|
| 445 |
+
def __init__(
|
| 446 |
+
self,
|
| 447 |
+
vae: AutoencoderKL,
|
| 448 |
+
text_encoder: CLIPTextModel,
|
| 449 |
+
tokenizer: CLIPTokenizer,
|
| 450 |
+
unet: UNet2DConditionModel,
|
| 451 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 452 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 453 |
+
feature_extractor: CLIPImageProcessor,
|
| 454 |
+
requires_safety_checker: bool = True,
|
| 455 |
+
):
|
| 456 |
+
super().__init__()
|
| 457 |
+
|
| 458 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
| 459 |
+
deprecation_message = (
|
| 460 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
| 461 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
| 462 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
| 463 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
| 464 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
| 465 |
+
" file"
|
| 466 |
+
)
|
| 467 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
| 468 |
+
new_config = dict(scheduler.config)
|
| 469 |
+
new_config["steps_offset"] = 1
|
| 470 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 471 |
+
|
| 472 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
| 473 |
+
deprecation_message = (
|
| 474 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
| 475 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
| 476 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
| 477 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
| 478 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
| 479 |
+
)
|
| 480 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
| 481 |
+
new_config = dict(scheduler.config)
|
| 482 |
+
new_config["clip_sample"] = False
|
| 483 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 484 |
+
|
| 485 |
+
if safety_checker is None and requires_safety_checker:
|
| 486 |
+
logger.warning(
|
| 487 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
| 488 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
| 489 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
| 490 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
| 491 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
| 492 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
| 493 |
)
|
|
|
|
| 494 |
|
| 495 |
+
if safety_checker is not None and feature_extractor is None:
|
| 496 |
+
raise ValueError(
|
| 497 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 498 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 499 |
+
)
|
| 500 |
|
| 501 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
| 502 |
+
version.parse(unet.config._diffusers_version).base_version
|
| 503 |
+
) < version.parse("0.9.0.dev0")
|
| 504 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
| 505 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
| 506 |
+
deprecation_message = (
|
| 507 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
| 508 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
| 509 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
| 510 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
| 511 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
| 512 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
| 513 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
| 514 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
| 515 |
+
" the `unet/config.json` file"
|
|
|
|
|
|
|
|
|
|
| 516 |
)
|
| 517 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
| 518 |
+
new_config = dict(unet.config)
|
| 519 |
+
new_config["sample_size"] = 64
|
| 520 |
+
unet._internal_dict = FrozenDict(new_config)
|
| 521 |
+
self.register_modules(
|
| 522 |
+
vae=vae,
|
| 523 |
+
text_encoder=text_encoder,
|
| 524 |
+
tokenizer=tokenizer,
|
| 525 |
+
unet=unet,
|
| 526 |
+
scheduler=scheduler,
|
| 527 |
+
safety_checker=safety_checker,
|
| 528 |
+
feature_extractor=feature_extractor,
|
| 529 |
+
)
|
| 530 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 531 |
+
|
| 532 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 533 |
+
self.register_to_config(
|
| 534 |
+
requires_safety_checker=requires_safety_checker,
|
| 535 |
+
)
|
| 536 |
|
| 537 |
+
def enable_vae_slicing(self):
|
| 538 |
+
r"""
|
| 539 |
+
Enable sliced VAE decoding.
|
| 540 |
+
|
| 541 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
| 542 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
| 543 |
+
"""
|
| 544 |
+
self.vae.enable_slicing()
|
| 545 |
+
|
| 546 |
+
def disable_vae_slicing(self):
|
| 547 |
+
r"""
|
| 548 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
| 549 |
+
computing decoding in one step.
|
| 550 |
+
"""
|
| 551 |
+
self.vae.disable_slicing()
|
| 552 |
+
|
| 553 |
+
def enable_vae_tiling(self):
|
| 554 |
+
r"""
|
| 555 |
+
Enable tiled VAE decoding.
|
| 556 |
+
|
| 557 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
| 558 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
| 559 |
+
"""
|
| 560 |
+
self.vae.enable_tiling()
|
| 561 |
+
|
| 562 |
+
def disable_vae_tiling(self):
|
| 563 |
+
r"""
|
| 564 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
| 565 |
+
computing decoding in one step.
|
| 566 |
+
"""
|
| 567 |
+
self.vae.disable_tiling()
|
| 568 |
+
|
| 569 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
|
| 570 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
| 571 |
+
r"""
|
| 572 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
| 573 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
| 574 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
| 575 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
| 576 |
+
`enable_model_cpu_offload`, but performance is lower.
|
| 577 |
+
"""
|
| 578 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
| 579 |
+
from accelerate import cpu_offload
|
| 580 |
+
else:
|
| 581 |
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
| 582 |
+
|
| 583 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 584 |
+
|
| 585 |
+
if self.device.type != "cpu":
|
| 586 |
+
self.to("cpu", silence_dtype_warnings=True)
|
| 587 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
| 588 |
+
|
| 589 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
| 590 |
+
cpu_offload(cpu_offloaded_model, device)
|
| 591 |
+
|
| 592 |
+
if self.safety_checker is not None:
|
| 593 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
| 594 |
+
|
| 595 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload
|
| 596 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
| 597 |
+
r"""
|
| 598 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
| 599 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
| 600 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
| 601 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
| 602 |
+
"""
|
| 603 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
| 604 |
+
from accelerate import cpu_offload_with_hook
|
| 605 |
+
else:
|
| 606 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
| 607 |
+
|
| 608 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 609 |
+
|
| 610 |
+
if self.device.type != "cpu":
|
| 611 |
+
self.to("cpu", silence_dtype_warnings=True)
|
| 612 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
| 613 |
+
|
| 614 |
+
hook = None
|
| 615 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
| 616 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
| 617 |
+
|
| 618 |
+
if self.safety_checker is not None:
|
| 619 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
| 620 |
+
|
| 621 |
+
# We'll offload the last model manually.
|
| 622 |
+
self.final_offload_hook = hook
|
| 623 |
|
| 624 |
@property
|
| 625 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
| 626 |
def _execution_device(self):
|
| 627 |
r"""
|
| 628 |
Returns the device on which the pipeline's models will be executed. After calling
|
| 629 |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
| 630 |
hooks.
|
| 631 |
"""
|
| 632 |
+
if not hasattr(self.unet, "_hf_hook"):
|
| 633 |
return self.device
|
| 634 |
for module in self.unet.modules():
|
| 635 |
if (
|
|
|
|
| 646 |
device,
|
| 647 |
num_images_per_prompt,
|
| 648 |
do_classifier_free_guidance,
|
| 649 |
+
negative_prompt=None,
|
| 650 |
+
max_embeddings_multiples=3,
|
| 651 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 652 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 653 |
):
|
| 654 |
r"""
|
| 655 |
Encodes the prompt into text encoder hidden states.
|
|
|
|
| 669 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 670 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 671 |
"""
|
| 672 |
+
if prompt is not None and isinstance(prompt, str):
|
| 673 |
+
batch_size = 1
|
| 674 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 675 |
+
batch_size = len(prompt)
|
| 676 |
+
else:
|
| 677 |
+
batch_size = prompt_embeds.shape[0]
|
| 678 |
+
|
| 679 |
+
if negative_prompt_embeds is None:
|
| 680 |
+
if negative_prompt is None:
|
| 681 |
+
negative_prompt = [""] * batch_size
|
| 682 |
+
elif isinstance(negative_prompt, str):
|
| 683 |
+
negative_prompt = [negative_prompt] * batch_size
|
| 684 |
+
if batch_size != len(negative_prompt):
|
| 685 |
+
raise ValueError(
|
| 686 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 687 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 688 |
+
" the batch size of `prompt`."
|
| 689 |
+
)
|
| 690 |
+
if prompt_embeds is None or negative_prompt_embeds is None:
|
| 691 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 692 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
| 693 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 694 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, self.tokenizer)
|
| 695 |
+
|
| 696 |
+
prompt_embeds1, negative_prompt_embeds1 = get_weighted_text_embeddings(
|
| 697 |
+
pipe=self,
|
| 698 |
+
prompt=prompt,
|
| 699 |
+
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
| 700 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
| 701 |
)
|
| 702 |
+
if prompt_embeds is None:
|
| 703 |
+
prompt_embeds = prompt_embeds1
|
| 704 |
+
if negative_prompt_embeds is None:
|
| 705 |
+
negative_prompt_embeds = negative_prompt_embeds1
|
| 706 |
|
| 707 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 708 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 709 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 710 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 711 |
|
| 712 |
if do_classifier_free_guidance:
|
| 713 |
+
bs_embed, seq_len, _ = negative_prompt_embeds.shape
|
| 714 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 715 |
+
negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 716 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 717 |
|
| 718 |
+
return prompt_embeds
|
| 719 |
|
| 720 |
+
def check_inputs(
|
| 721 |
+
self,
|
| 722 |
+
prompt,
|
| 723 |
+
height,
|
| 724 |
+
width,
|
| 725 |
+
strength,
|
| 726 |
+
callback_steps,
|
| 727 |
+
negative_prompt=None,
|
| 728 |
+
prompt_embeds=None,
|
| 729 |
+
negative_prompt_embeds=None,
|
| 730 |
+
):
|
| 731 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 732 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 733 |
|
| 734 |
if strength < 0 or strength > 1:
|
| 735 |
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
| 736 |
|
|
|
|
|
|
|
|
|
|
| 737 |
if (callback_steps is None) or (
|
| 738 |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 739 |
):
|
|
|
|
| 742 |
f" {type(callback_steps)}."
|
| 743 |
)
|
| 744 |
|
| 745 |
+
if prompt is not None and prompt_embeds is not None:
|
| 746 |
+
raise ValueError(
|
| 747 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 748 |
+
" only forward one of the two."
|
| 749 |
+
)
|
| 750 |
+
elif prompt is None and prompt_embeds is None:
|
| 751 |
+
raise ValueError(
|
| 752 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 753 |
+
)
|
| 754 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 755 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 756 |
+
|
| 757 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 758 |
+
raise ValueError(
|
| 759 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 760 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 764 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 765 |
+
raise ValueError(
|
| 766 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 767 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 768 |
+
f" {negative_prompt_embeds.shape}."
|
| 769 |
+
)
|
| 770 |
+
|
| 771 |
def get_timesteps(self, num_inference_steps, strength, device, is_text2img):
|
| 772 |
if is_text2img:
|
| 773 |
return self.scheduler.timesteps.to(device), num_inference_steps
|
| 774 |
else:
|
| 775 |
# get the original timestep using init_timestep
|
| 776 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
| 777 |
+
|
| 778 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
| 779 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
| 780 |
|
|
|
|
|
|
|
| 781 |
return timesteps, num_inference_steps - t_start
|
| 782 |
|
| 783 |
def run_safety_checker(self, image, device, dtype):
|
|
|
|
| 791 |
return image, has_nsfw_concept
|
| 792 |
|
| 793 |
def decode_latents(self, latents):
|
| 794 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 795 |
image = self.vae.decode(latents).sample
|
| 796 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 797 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 798 |
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 799 |
return image
|
| 800 |
|
|
|
|
| 815 |
extra_step_kwargs["generator"] = generator
|
| 816 |
return extra_step_kwargs
|
| 817 |
|
| 818 |
+
def prepare_latents(
|
| 819 |
+
self,
|
| 820 |
+
image,
|
| 821 |
+
timestep,
|
| 822 |
+
num_images_per_prompt,
|
| 823 |
+
batch_size,
|
| 824 |
+
num_channels_latents,
|
| 825 |
+
height,
|
| 826 |
+
width,
|
| 827 |
+
dtype,
|
| 828 |
+
device,
|
| 829 |
+
generator,
|
| 830 |
+
latents=None,
|
| 831 |
+
):
|
| 832 |
if image is None:
|
| 833 |
+
batch_size = batch_size * num_images_per_prompt
|
| 834 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 835 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 836 |
+
raise ValueError(
|
| 837 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 838 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 839 |
+
)
|
| 840 |
|
| 841 |
if latents is None:
|
| 842 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 843 |
else:
|
|
|
|
|
|
|
| 844 |
latents = latents.to(device)
|
| 845 |
|
| 846 |
# scale the initial noise by the standard deviation required by the scheduler
|
| 847 |
latents = latents * self.scheduler.init_noise_sigma
|
| 848 |
return latents, None, None
|
| 849 |
else:
|
| 850 |
+
image = image.to(device=self.device, dtype=dtype)
|
| 851 |
init_latent_dist = self.vae.encode(image).latent_dist
|
| 852 |
init_latents = init_latent_dist.sample(generator=generator)
|
| 853 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
| 854 |
+
|
| 855 |
+
# Expand init_latents for batch_size and num_images_per_prompt
|
| 856 |
+
init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0)
|
| 857 |
init_latents_orig = init_latents
|
|
|
|
| 858 |
|
| 859 |
# add noise to latents using the timesteps
|
| 860 |
+
noise = randn_tensor(init_latents.shape, generator=generator, device=self.device, dtype=dtype)
|
| 861 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
| 862 |
+
latents = init_latents
|
|
|
|
|
|
|
| 863 |
return latents, init_latents_orig, noise
|
| 864 |
|
| 865 |
@torch.no_grad()
|
|
|
|
| 875 |
guidance_scale: float = 7.5,
|
| 876 |
strength: float = 0.8,
|
| 877 |
num_images_per_prompt: Optional[int] = 1,
|
| 878 |
+
add_predicted_noise: Optional[bool] = False,
|
| 879 |
eta: float = 0.0,
|
| 880 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 881 |
latents: Optional[torch.FloatTensor] = None,
|
| 882 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 883 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 884 |
max_embeddings_multiples: Optional[int] = 3,
|
| 885 |
output_type: Optional[str] = "pil",
|
| 886 |
return_dict: bool = True,
|
| 887 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 888 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 889 |
+
callback_steps: int = 1,
|
| 890 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 891 |
):
|
| 892 |
r"""
|
| 893 |
Function invoked when calling the pipeline for generation.
|
|
|
|
| 927 |
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
| 928 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 929 |
The number of images to generate per prompt.
|
| 930 |
+
add_predicted_noise (`bool`, *optional*, defaults to True):
|
| 931 |
+
Use predicted noise instead of random noise when constructing noisy versions of the original image in
|
| 932 |
+
the reverse diffusion process
|
| 933 |
eta (`float`, *optional*, defaults to 0.0):
|
| 934 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 935 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 936 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 937 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 938 |
+
to make generation deterministic.
|
| 939 |
latents (`torch.FloatTensor`, *optional*):
|
| 940 |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 941 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 942 |
tensor will ge generated by sampling using the supplied random `generator`.
|
| 943 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 944 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 945 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 946 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 947 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 948 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 949 |
+
argument.
|
| 950 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 951 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 952 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
| 964 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 965 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 966 |
called at every step.
|
| 967 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 968 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 969 |
+
`self.processor` in
|
| 970 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 971 |
|
| 972 |
Returns:
|
| 973 |
`None` if cancelled by `is_cancelled_callback`,
|
|
|
|
| 977 |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 978 |
(nsfw) content, according to the `safety_checker`.
|
| 979 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 980 |
# 0. Default height and width to unet
|
| 981 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 982 |
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 983 |
|
| 984 |
# 1. Check inputs. Raise error if not correct
|
| 985 |
+
self.check_inputs(
|
| 986 |
+
prompt, height, width, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
| 987 |
+
)
|
| 988 |
|
| 989 |
# 2. Define call parameters
|
| 990 |
+
if prompt is not None and isinstance(prompt, str):
|
| 991 |
+
batch_size = 1
|
| 992 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 993 |
+
batch_size = len(prompt)
|
| 994 |
+
else:
|
| 995 |
+
batch_size = prompt_embeds.shape[0]
|
| 996 |
+
|
| 997 |
device = self._execution_device
|
| 998 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 999 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
|
|
| 1001 |
do_classifier_free_guidance = guidance_scale > 1.0
|
| 1002 |
|
| 1003 |
# 3. Encode input prompt
|
| 1004 |
+
prompt_embeds = self._encode_prompt(
|
| 1005 |
prompt,
|
| 1006 |
device,
|
| 1007 |
num_images_per_prompt,
|
| 1008 |
do_classifier_free_guidance,
|
| 1009 |
negative_prompt,
|
| 1010 |
max_embeddings_multiples,
|
| 1011 |
+
prompt_embeds=prompt_embeds,
|
| 1012 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1013 |
)
|
| 1014 |
+
dtype = prompt_embeds.dtype
|
| 1015 |
|
| 1016 |
# 4. Preprocess image and mask
|
| 1017 |
if isinstance(image, PIL.Image.Image):
|
| 1018 |
+
image = preprocess_image(image, batch_size)
|
| 1019 |
if image is not None:
|
| 1020 |
image = image.to(device=self.device, dtype=dtype)
|
| 1021 |
if isinstance(mask_image, PIL.Image.Image):
|
| 1022 |
+
mask_image = preprocess_mask(mask_image, batch_size, self.vae_scale_factor)
|
| 1023 |
if mask_image is not None:
|
| 1024 |
mask = mask_image.to(device=self.device, dtype=dtype)
|
| 1025 |
+
mask = torch.cat([mask] * num_images_per_prompt)
|
| 1026 |
else:
|
| 1027 |
mask = None
|
| 1028 |
|
|
|
|
| 1035 |
latents, init_latents_orig, noise = self.prepare_latents(
|
| 1036 |
image,
|
| 1037 |
latent_timestep,
|
| 1038 |
+
num_images_per_prompt,
|
| 1039 |
+
batch_size,
|
| 1040 |
+
self.unet.config.in_channels,
|
| 1041 |
height,
|
| 1042 |
width,
|
| 1043 |
dtype,
|
|
|
|
| 1050 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1051 |
|
| 1052 |
# 8. Denoising loop
|
| 1053 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 1054 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1055 |
+
for i, t in enumerate(timesteps):
|
| 1056 |
+
# expand the latents if we are doing classifier free guidance
|
| 1057 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 1058 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1059 |
+
|
| 1060 |
+
# predict the noise residual
|
| 1061 |
+
noise_pred = self.unet(
|
| 1062 |
+
latent_model_input,
|
| 1063 |
+
t,
|
| 1064 |
+
encoder_hidden_states=prompt_embeds,
|
| 1065 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1066 |
+
).sample
|
| 1067 |
+
|
| 1068 |
+
# perform guidance
|
| 1069 |
+
if do_classifier_free_guidance:
|
| 1070 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1071 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1072 |
+
|
| 1073 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1074 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 1075 |
+
|
| 1076 |
+
if mask is not None:
|
| 1077 |
+
# masking
|
| 1078 |
+
if add_predicted_noise:
|
| 1079 |
+
init_latents_proper = self.scheduler.add_noise(
|
| 1080 |
+
init_latents_orig, noise_pred_uncond, torch.tensor([t])
|
| 1081 |
+
)
|
| 1082 |
+
else:
|
| 1083 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
| 1084 |
+
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
| 1085 |
+
|
| 1086 |
+
# call the callback, if provided
|
| 1087 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1088 |
+
progress_bar.update()
|
| 1089 |
+
if i % callback_steps == 0:
|
| 1090 |
+
if callback is not None:
|
| 1091 |
+
callback(i, t, latents)
|
| 1092 |
+
if is_cancelled_callback is not None and is_cancelled_callback():
|
| 1093 |
+
return None
|
| 1094 |
+
|
| 1095 |
+
if output_type == "latent":
|
| 1096 |
+
image = latents
|
| 1097 |
+
has_nsfw_concept = None
|
| 1098 |
+
elif output_type == "pil":
|
| 1099 |
+
# 9. Post-processing
|
| 1100 |
+
image = self.decode_latents(latents)
|
| 1101 |
+
|
| 1102 |
+
# 10. Run safety checker
|
| 1103 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 1104 |
+
|
| 1105 |
+
# 11. Convert to PIL
|
| 1106 |
image = self.numpy_to_pil(image)
|
| 1107 |
+
else:
|
| 1108 |
+
# 9. Post-processing
|
| 1109 |
+
image = self.decode_latents(latents)
|
| 1110 |
+
|
| 1111 |
+
# 10. Run safety checker
|
| 1112 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 1113 |
+
|
| 1114 |
+
# Offload last model to CPU
|
| 1115 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 1116 |
+
self.final_offload_hook.offload()
|
| 1117 |
|
| 1118 |
if not return_dict:
|
| 1119 |
return image, has_nsfw_concept
|
|
|
|
| 1130 |
guidance_scale: float = 7.5,
|
| 1131 |
num_images_per_prompt: Optional[int] = 1,
|
| 1132 |
eta: float = 0.0,
|
| 1133 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1134 |
latents: Optional[torch.FloatTensor] = None,
|
| 1135 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1136 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1137 |
max_embeddings_multiples: Optional[int] = 3,
|
| 1138 |
output_type: Optional[str] = "pil",
|
| 1139 |
return_dict: bool = True,
|
| 1140 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 1141 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 1142 |
+
callback_steps: int = 1,
|
| 1143 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1144 |
):
|
| 1145 |
r"""
|
| 1146 |
Function for text-to-image generation.
|
|
|
|
| 1168 |
eta (`float`, *optional*, defaults to 0.0):
|
| 1169 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 1170 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 1171 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1172 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 1173 |
+
to make generation deterministic.
|
| 1174 |
latents (`torch.FloatTensor`, *optional*):
|
| 1175 |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 1176 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 1177 |
tensor will ge generated by sampling using the supplied random `generator`.
|
| 1178 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1179 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 1180 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 1181 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1182 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 1183 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 1184 |
+
argument.
|
| 1185 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 1186 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 1187 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
| 1199 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 1200 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1201 |
called at every step.
|
| 1202 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 1203 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 1204 |
+
`self.processor` in
|
| 1205 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 1206 |
+
|
| 1207 |
Returns:
|
| 1208 |
+
`None` if cancelled by `is_cancelled_callback`,
|
| 1209 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 1210 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 1211 |
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
|
|
| 1223 |
eta=eta,
|
| 1224 |
generator=generator,
|
| 1225 |
latents=latents,
|
| 1226 |
+
prompt_embeds=prompt_embeds,
|
| 1227 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1228 |
max_embeddings_multiples=max_embeddings_multiples,
|
| 1229 |
output_type=output_type,
|
| 1230 |
return_dict=return_dict,
|
| 1231 |
callback=callback,
|
| 1232 |
is_cancelled_callback=is_cancelled_callback,
|
| 1233 |
callback_steps=callback_steps,
|
| 1234 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1235 |
)
|
| 1236 |
|
| 1237 |
def img2img(
|
|
|
|
| 1244 |
guidance_scale: Optional[float] = 7.5,
|
| 1245 |
num_images_per_prompt: Optional[int] = 1,
|
| 1246 |
eta: Optional[float] = 0.0,
|
| 1247 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1248 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1249 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1250 |
max_embeddings_multiples: Optional[int] = 3,
|
| 1251 |
output_type: Optional[str] = "pil",
|
| 1252 |
return_dict: bool = True,
|
| 1253 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 1254 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 1255 |
+
callback_steps: int = 1,
|
| 1256 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1257 |
):
|
| 1258 |
r"""
|
| 1259 |
Function for image-to-image generation.
|
|
|
|
| 1286 |
eta (`float`, *optional*, defaults to 0.0):
|
| 1287 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 1288 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 1289 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1290 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 1291 |
+
to make generation deterministic.
|
| 1292 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1293 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 1294 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 1295 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1296 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 1297 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 1298 |
+
argument.
|
| 1299 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 1300 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 1301 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
| 1313 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 1314 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1315 |
called at every step.
|
| 1316 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 1317 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 1318 |
+
`self.processor` in
|
| 1319 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 1320 |
+
|
| 1321 |
Returns:
|
| 1322 |
+
`None` if cancelled by `is_cancelled_callback`,
|
| 1323 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 1324 |
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 1325 |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
|
|
| 1335 |
num_images_per_prompt=num_images_per_prompt,
|
| 1336 |
eta=eta,
|
| 1337 |
generator=generator,
|
| 1338 |
+
prompt_embeds=prompt_embeds,
|
| 1339 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1340 |
max_embeddings_multiples=max_embeddings_multiples,
|
| 1341 |
output_type=output_type,
|
| 1342 |
return_dict=return_dict,
|
| 1343 |
callback=callback,
|
| 1344 |
is_cancelled_callback=is_cancelled_callback,
|
| 1345 |
callback_steps=callback_steps,
|
| 1346 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1347 |
)
|
| 1348 |
|
| 1349 |
def inpaint(
|
|
|
|
| 1356 |
num_inference_steps: Optional[int] = 50,
|
| 1357 |
guidance_scale: Optional[float] = 7.5,
|
| 1358 |
num_images_per_prompt: Optional[int] = 1,
|
| 1359 |
+
add_predicted_noise: Optional[bool] = False,
|
| 1360 |
eta: Optional[float] = 0.0,
|
| 1361 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1362 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1363 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1364 |
max_embeddings_multiples: Optional[int] = 3,
|
| 1365 |
output_type: Optional[str] = "pil",
|
| 1366 |
return_dict: bool = True,
|
| 1367 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 1368 |
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 1369 |
+
callback_steps: int = 1,
|
| 1370 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1371 |
):
|
| 1372 |
r"""
|
| 1373 |
Function for inpaint.
|
|
|
|
| 1401 |
usually at the expense of lower image quality.
|
| 1402 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1403 |
The number of images to generate per prompt.
|
| 1404 |
+
add_predicted_noise (`bool`, *optional*, defaults to True):
|
| 1405 |
+
Use predicted noise instead of random noise when constructing noisy versions of the original image in
|
| 1406 |
+
the reverse diffusion process
|
| 1407 |
eta (`float`, *optional*, defaults to 0.0):
|
| 1408 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 1409 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 1410 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1411 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 1412 |
+
to make generation deterministic.
|
| 1413 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1414 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 1415 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 1416 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1417 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 1418 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 1419 |
+
argument.
|
| 1420 |
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 1421 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 1422 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
| 1434 |
callback_steps (`int`, *optional*, defaults to 1):
|
| 1435 |
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1436 |
called at every step.
|
| 1437 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 1438 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 1439 |
+
`self.processor` in
|
| 1440 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 1441 |
+
|
| 1442 |
Returns:
|
| 1443 |
+
`None` if cancelled by `is_cancelled_callback`,
|
| 1444 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 1445 |
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 1446 |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
|
|
| 1455 |
guidance_scale=guidance_scale,
|
| 1456 |
strength=strength,
|
| 1457 |
num_images_per_prompt=num_images_per_prompt,
|
| 1458 |
+
add_predicted_noise=add_predicted_noise,
|
| 1459 |
eta=eta,
|
| 1460 |
generator=generator,
|
| 1461 |
+
prompt_embeds=prompt_embeds,
|
| 1462 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1463 |
max_embeddings_multiples=max_embeddings_multiples,
|
| 1464 |
output_type=output_type,
|
| 1465 |
return_dict=return_dict,
|
| 1466 |
callback=callback,
|
| 1467 |
is_cancelled_callback=is_cancelled_callback,
|
| 1468 |
callback_steps=callback_steps,
|
| 1469 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1470 |
)
|