File size: 11,953 Bytes
7871b93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
---
license: apache-2.0
library_name: transformers
pipeline_tag: image-text-to-text
tags:
- multimodal
- vision-language
- qwen3-vl
- image-to-text
- video-understanding
---
<!-- README Version: v1.0 -->
# Qwen3-VL-32B-Instruct
## Model Description
Qwen3-VL-32B-Instruct is a state-of-the-art multimodal large language model developed by Qwen team at Alibaba Cloud. With 33 billion parameters, this model represents the most powerful vision-language model in the Qwen series, delivering comprehensive upgrades across multiple dimensions including superior text understanding & generation, deeper visual perception & reasoning, extended context length, enhanced spatial and video dynamics comprehension, and stronger agent interaction capabilities.
### Key Capabilities
- **Vision-Language Understanding**: Advanced multimodal reasoning combining visual and textual information
- **Visual Agent**: Operates PC/mobile GUIsβrecognizes elements, understands functions, invokes tools, completes tasks
- **Visual Coding**: Generates Draw.io diagrams, HTML, CSS, and JavaScript from images and videos
- **Spatial Perception**: Judges object positions, viewpoints, and occlusions; provides 2D grounding and 3D grounding for spatial reasoning
- **Video Understanding**: Processes and analyzes video content with temporal indexing and dynamics comprehension
- **Long Context**: Native 256K context window, expandable to 1 million tokens
- **Multilingual OCR**: Optical character recognition across 32 languages
- **STEM Reasoning**: Multimodal mathematical and scientific reasoning capabilities
## Repository Contents
**Note**: This directory is prepared for storing Qwen3-VL-32B-Instruct model files. Model files should be downloaded from the official Hugging Face repository.
### Expected Files (when downloaded):
```
qwen3-vl-32b-instruct/
βββ config.json # Model configuration
βββ generation_config.json # Generation parameters
βββ model-*.safetensors # Model weight shards (multiple files)
βββ model.safetensors.index.json # Weight shard index
βββ preprocessor_config.json # Preprocessing configuration
βββ tokenizer.json # Tokenizer vocabulary
βββ tokenizer_config.json # Tokenizer configuration
βββ merges.txt # BPE merges
βββ vocab.json # Vocabulary file
```
### Estimated Storage Requirements
- **Model Files**: ~65-70 GB (BF16 precision)
- **Total Repository**: ~70 GB
## Hardware Requirements
### Minimum Requirements
- **VRAM**: 80 GB GPU memory (A100 80GB or equivalent)
- **RAM**: 128 GB system memory
- **Disk Space**: 100 GB free space (for model files and cache)
- **GPU**: NVIDIA GPU with CUDA capability (A100, H100 recommended)
### Recommended Setup
- **Multi-GPU**: 2x A100 80GB or 4x A100 40GB for optimal performance
- **Flash Attention 2**: Strongly recommended for memory efficiency and speed
- **Mixed Precision**: BF16 or FP16 for reduced memory footprint
### Performance Optimization
- Enable `flash_attention_2` for better acceleration and memory saving
- Use `torch.bfloat16` or automatic dtype selection
- Consider device mapping for multi-GPU setups
- Use gradient checkpointing for fine-tuning scenarios
## Usage Examples
### Installation
```bash
pip install transformers accelerate torch pillow
pip install flash-attn --no-build-isolation # Optional but recommended
```
### Basic Usage with Transformers
```python
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from PIL import Image
import torch
# Model path - update with your local path
model_path = "E:/huggingface/qwen3-vl-32b-instruct"
# Load model and processor
model = Qwen3VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="flash_attention_2" # Recommended
)
processor = AutoProcessor.from_pretrained(model_path)
# Example: Image understanding
image = Image.open("path/to/your/image.jpg")
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe this image in detail."}
]
}
]
# Prepare inputs
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(
text=[text],
images=[image],
return_tensors="pt",
padding=True
)
inputs = inputs.to(model.device)
# Generate response
output_ids = model.generate(
**inputs,
max_new_tokens=1024,
do_sample=False
)
# Decode output
generated_text = processor.batch_decode(
output_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
print(generated_text)
```
### Video Understanding Example
```python
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
import torch
import cv2
import numpy as np
model_path = "E:/huggingface/qwen3-vl-32b-instruct"
# Load model
model = Qwen3VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="flash_attention_2"
)
processor = AutoProcessor.from_pretrained(model_path)
# Load video frames
def load_video_frames(video_path, max_frames=16):
cap = cv2.VideoCapture(video_path)
frames = []
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
indices = np.linspace(0, total_frames - 1, max_frames, dtype=int)
for idx in indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame))
cap.release()
return frames
# Process video
video_frames = load_video_frames("path/to/video.mp4")
messages = [
{
"role": "user",
"content": [
{"type": "video"},
{"type": "text", "text": "Summarize what happens in this video."}
]
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(
text=[text],
videos=[video_frames],
return_tensors="pt"
)
inputs = inputs.to(model.device)
# Generate
output_ids = model.generate(
**inputs,
max_new_tokens=2048
)
response = processor.batch_decode(
output_ids,
skip_special_tokens=True
)[0]
print(response)
```
### Multi-Image Reasoning
```python
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from PIL import Image
import torch
model_path = "E:/huggingface/qwen3-vl-32b-instruct"
model = Qwen3VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="flash_attention_2"
)
processor = AutoProcessor.from_pretrained(model_path)
# Load multiple images
images = [
Image.open("image1.jpg"),
Image.open("image2.jpg"),
Image.open("image3.jpg")
]
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "image"},
{"type": "image"},
{"type": "text", "text": "Compare these three images and explain the differences."}
]
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(
text=[text],
images=images,
return_tensors="pt"
)
inputs = inputs.to(model.device)
output_ids = model.generate(**inputs, max_new_tokens=1024)
response = processor.batch_decode(output_ids, skip_special_tokens=True)[0]
print(response)
```
## Model Specifications
### Architecture Details
- **Model Type**: Multimodal Vision-Language Model
- **Parameters**: 33 billion
- **Architecture Innovations**:
- **Interleaved-MRoPE**: Enhanced positional embeddings across temporal and spatial dimensions
- **DeepStack**: Multi-level vision transformer feature fusion
- **Text-Timestamp Alignment**: Precise video temporal grounding
- **Precision**: BF16 (Brain Float 16)
- **Format**: Safetensors
- **Context Window**: 256K tokens (native), expandable to 1M tokens
- **Max Output Tokens**:
- Vision-language tasks: 16,384 tokens
- Pure text tasks: 32,768 tokens
### Supported Modalities
- **Input**: Text, Images (single/multiple), Video frames
- **Output**: Text with multimodal understanding and reasoning
- **Image Formats**: JPEG, PNG, WebP, and other common formats
- **Video Processing**: Frame-based with temporal indexing
### Languages Supported
- Primary: English, Chinese
- OCR Support: 32 languages including major European, Asian, and Middle Eastern languages
## Performance Tips and Optimization
### Memory Optimization
1. **Enable Flash Attention 2**:
```python
model = Qwen3VLForConditionalGeneration.from_pretrained(
model_path,
attn_implementation="flash_attention_2"
)
```
2. **Use Mixed Precision**:
```python
model = Qwen3VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
)
```
3. **Device Mapping for Multi-GPU**:
```python
model = Qwen3VLForConditionalGeneration.from_pretrained(
model_path,
device_map="auto" # Automatic distribution across GPUs
)
```
4. **Gradient Checkpointing** (for fine-tuning):
```python
model.gradient_checkpointing_enable()
```
### Inference Speed Optimization
- Use batch processing for multiple images when possible
- Preload and cache the model to avoid repeated loading
- Consider quantization (FP8, INT8) for production deployment
- Utilize tensor parallelism for very large batch sizes
### Quality Optimization
- For complex reasoning tasks, increase `max_new_tokens`
- Use temperature sampling for creative tasks
- Adjust `top_p` and `top_k` for controlled generation
- Enable `do_sample=True` for more diverse outputs
## License
This model is released under the **Apache License 2.0**.
You are free to:
- Use the model commercially
- Modify and distribute the model
- Use the model for research purposes
Conditions:
- Preserve copyright and license notices
- State significant changes made to the model
- Include the license text with distributions
See the full license at: https://www.apache.org/licenses/LICENSE-2.0
## Citation
If you use Qwen3-VL-32B-Instruct in your research or applications, please cite:
```bibtex
@article{qwen3vl2025,
title={Qwen3-VL: The Most Powerful Vision-Language Model in the Qwen Series},
author={Qwen Team},
journal={arXiv preprint},
year={2025},
institution={Alibaba Cloud}
}
```
## Official Resources
- **Official Model**: [https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct)
- **GitHub Repository**: [https://github.com/QwenLM/Qwen3-VL](https://github.com/QwenLM/Qwen3-VL)
- **Documentation**: [https://huggingface.co/docs/transformers/model_doc/qwen3_vl](https://huggingface.co/docs/transformers/model_doc/qwen3_vl)
- **Model Collection**: [https://huggingface.co/collections/Qwen/qwen3-vl-68d2a7c1b8a8afce4ebd2dbe](https://huggingface.co/collections/Qwen/qwen3-vl-68d2a7c1b8a8afce4ebd2dbe)
- **Qwen Website**: [https://qwenlm.github.io](https://qwenlm.github.io)
## Additional Variants
- **Qwen3-VL-32B-Instruct-FP8**: Fine-grained FP8 quantized version for reduced memory usage
- **Qwen3-VL-32B-Instruct-GGUF**: GGUF format for llama.cpp compatibility
- **Qwen3-VL-2B-Instruct**: Smaller 2B parameter version for edge devices
- **Qwen3-VL-30B-A3B-Instruct**: MoE architecture variant
## Contact and Support
For questions, issues, or feedback:
- GitHub Issues: [https://github.com/QwenLM/Qwen3-VL/issues](https://github.com/QwenLM/Qwen3-VL/issues)
- Hugging Face Community: [https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct/discussions](https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct/discussions)
---
**Generated with Claude Code** - Professional model documentation for local Hugging Face repositories.
|