--- license: openrail++ library_name: diffusers pipeline_tag: text-to-image tags: - sdxl - text-to-image - image-generation --- # Stable Diffusion XL FP16 Model Repository Local repository containing Stable Diffusion XL (SDXL) checkpoint models in FP16 precision for high-quality text-to-image generation. ## Model Description This repository contains two SDXL checkpoint models optimized for different use cases: - **SDXL Base**: Full-featured SDXL 1.0 base model for high-quality image generation with standard inference steps - **SDXL Turbo**: Fast inference variant optimized for fewer steps (1-4 steps) while maintaining quality Both models use FP16 (16-bit floating point) precision, providing a balance between quality and VRAM efficiency. ## Repository Contents ``` E:\huggingface\sdxl-fp16\ ├── checkpoints/ │ └── sdxl/ │ ├── sdxl-base.safetensors (6.94 GB) │ └── sdxl-turbo.safetensors (13.88 GB) ├── diffusion_models/ │ └── sdxl/ (empty - reserved) └── loras/ └── sdxl/ (empty - reserved) ``` **Total Repository Size**: ~20.82 GB ### Model Files | File | Size | Description | |------|------|-------------| | `sdxl-base.safetensors` | 6.94 GB | SDXL 1.0 base checkpoint (FP16) | | `sdxl-turbo.safetensors` | 13.88 GB | SDXL Turbo checkpoint (FP16) | ## Hardware Requirements ### SDXL Base - **VRAM**: 8GB minimum, 12GB+ recommended - **Disk Space**: 7GB for model file - **System RAM**: 16GB+ recommended - **GPU**: NVIDIA GPU with CUDA support ### SDXL Turbo - **VRAM**: 12GB minimum, 16GB+ recommended - **Disk Space**: 14GB for model file - **System RAM**: 16GB+ recommended - **GPU**: NVIDIA GPU with CUDA support ## Usage Examples ### SDXL Base (Standard Quality) ```python from diffusers import DiffusionPipeline import torch # Load SDXL base model from local path pipe = DiffusionPipeline.from_single_file( "E:/huggingface/sdxl-fp16/checkpoints/sdxl/sdxl-base.safetensors", torch_dtype=torch.float16 ) pipe.to("cuda") # Generate image with standard settings image = pipe( prompt="a beautiful mountain landscape at sunset, photorealistic, highly detailed", negative_prompt="blurry, low quality, distorted", num_inference_steps=50, guidance_scale=7.5, width=1024, height=1024 ).images[0] image.save("output.png") ``` ### SDXL Turbo (Fast Generation) ```python from diffusers import DiffusionPipeline import torch # Load SDXL Turbo for fast inference pipe = DiffusionPipeline.from_single_file( "E:/huggingface/sdxl-fp16/checkpoints/sdxl/sdxl-turbo.safetensors", torch_dtype=torch.float16 ) pipe.to("cuda") # Generate with minimal steps (1-4 steps) image = pipe( prompt="a futuristic cityscape at night, neon lights, cyberpunk", num_inference_steps=4, # Turbo optimized for 1-4 steps guidance_scale=0.0, # Turbo works best with guidance_scale=0 width=1024, height=1024 ).images[0] image.save("turbo_output.png") ``` ### Memory Optimization ```python import torch from diffusers import DiffusionPipeline # Enable memory-efficient attention pipe = DiffusionPipeline.from_single_file( "E:/huggingface/sdxl-fp16/checkpoints/sdxl/sdxl-base.safetensors", torch_dtype=torch.float16 ) # Apply optimizations pipe.enable_attention_slicing() pipe.enable_vae_slicing() pipe.to("cuda") # Generate with optimized memory usage image = pipe( prompt="your prompt here", num_inference_steps=30 ).images[0] ``` ## Model Specifications ### SDXL Base - **Architecture**: Latent Diffusion Model with UNet - **Parameters**: ~2.6B (UNet backbone) - **Precision**: FP16 (16-bit floating point) - **Format**: SafeTensors (secure, efficient) - **Resolution**: 1024x1024 native, supports 512-2048px - **Text Encoders**: Dual CLIP (OpenCLIP ViT-bigG, OpenAI CLIP ViT-L) - **Inference Steps**: 30-50 recommended ### SDXL Turbo - **Architecture**: Adversarial Diffusion Distillation (ADD) - **Parameters**: Similar to base with distillation optimizations - **Precision**: FP16 (16-bit floating point) - **Format**: SafeTensors - **Resolution**: 1024x1024 native - **Inference Steps**: 1-4 steps (optimized) - **Guidance Scale**: 0.0 recommended (classifier-free guidance disabled) ## Performance Tips ### Speed Optimization - **SDXL Turbo**: Use 1-4 steps with `guidance_scale=0.0` for fastest generation - **Attention Slicing**: Enable with `pipe.enable_attention_slicing()` for memory efficiency - **VAE Slicing**: Enable with `pipe.enable_vae_slicing()` to reduce VRAM usage - **Lower Resolutions**: Use 768x768 or 512x512 for faster generation - **Batch Processing**: Process multiple prompts together when VRAM allows ### Quality Optimization - **SDXL Base**: Use 40-50 steps for highest quality - **Guidance Scale**: 7.0-9.0 for base model (higher = more prompt adherence) - **Negative Prompts**: Use detailed negative prompts to avoid unwanted elements - **Resolution**: 1024x1024 is the native resolution for best results - **Aspect Ratios**: Multiples of 64 recommended (1024x768, 768x1024, etc.) ### VRAM Management - **8GB VRAM**: Use attention slicing, VAE slicing, lower batch sizes - **12GB VRAM**: Standard settings with optimizations - **16GB+ VRAM**: Can handle higher resolutions and batch sizes ## Changelog ### v1.4 (2025-10-28) - Final verification of repository structure and model integrity - Confirmed all file sizes and paths are accurate - Validated YAML frontmatter format and HuggingFace compliance - Documentation verified complete and production-ready ### v1.3 (2025-10-28) - Verified repository structure and model file integrity - Confirmed YAML frontmatter compliance with HuggingFace standards - Validated all file paths and sizes - Updated documentation timestamp ### v1.2 (2025-10-14) - Fixed YAML frontmatter: removed base_model fields (these are base models, not derived) - Streamlined tags to essential categories only - Improved metadata compliance with Hugging Face standards ### v1.1 (2025-10-14) - Updated YAML frontmatter format (metadata now precedes version header) - Optimized tag ordering for better discoverability - Verified all model files and sizes ### v1.0 (2025-10-13) - Initial repository documentation - Added SDXL Base checkpoint (6.94 GB) - Added SDXL Turbo checkpoint (13.88 GB) - Organized directory structure for checkpoints, diffusion models, and LoRAs ## License **License**: CreativeML Open RAIL++-M License Stable Diffusion XL models are released under the [CreativeML Open RAIL++-M license](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md), which permits commercial use with the following key terms: - ✅ Commercial use permitted - ✅ Modification and redistribution allowed - ⚠️ Use restrictions apply (see full license) - ⚠️ Must include license and attribution **Key Restrictions**: Cannot be used for illegal activities, generating harmful content, or violating privacy rights. See full license for complete terms. ## Citation If you use these models in your research or applications, please cite: ```bibtex @misc{podell2023sdxl, title={SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis}, author={Dustin Podell and Zion English and Kyle Lacey and Andreas Blattmann and Tim Dockhorn and Jonas Müller and Joe Penna and Robin Rombach}, year={2023}, eprint={2307.01952}, archivePrefix={arXiv}, primaryClass={cs.CV} } @inproceedings{sauer2023adversarial, title={Adversarial Diffusion Distillation}, author={Sauer, Axel and Lorenz, Dominik and Blattmann, Andreas and Rombach, Robin}, booktitle={arXiv preprint arXiv:2311.17042}, year={2023} } ``` ## Official Resources - [SDXL Base Model](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) - [SDXL Turbo Model](https://huggingface.co/stabilityai/sdxl-turbo) - [SDXL Documentation](https://huggingface.co/docs/diffusers/using-diffusers/sdxl) - [Diffusers Library](https://github.com/huggingface/diffusers) - [SDXL Paper](https://arxiv.org/abs/2307.01952) - [SDXL Turbo Paper](https://arxiv.org/abs/2311.17042) ## Contact & Support - **Issues**: Report issues with models or documentation on [Hugging Face Discussions](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/discussions) - **Community**: Join [Hugging Face Discord](https://discord.gg/hugging-face) for community support - **Repository**: This is a local storage repository - for upstream issues, see official model pages --- **Repository maintained locally** | Last updated: 2025-10-28 | Version: v1.4