Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +570 -0
- config.json +47 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +952 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:3072899
|
| 8 |
+
- loss:MSELoss
|
| 9 |
+
widget:
|
| 10 |
+
- source_sentence: That means you can see that disc 80 feet down.
|
| 11 |
+
sentences:
|
| 12 |
+
- Он также сказал, что наводнение, идущее вниз по течению в приходе Ассеншен, является
|
| 13 |
+
угрозой, так как эти вздувшиеся реки будут медленно стекать в озеро Морпа. «В
|
| 14 |
+
киберфутбол играют десятки миллионов людей по всему континенту, и мы рады дать
|
| 15 |
+
шанс участникам состязания из наших национальных ассоциаций представлять свою
|
| 16 |
+
страну на самом высоком уровне», – заявил директор по маркетингу УЕФА Ги-Лоран
|
| 17 |
+
Эпстейн.
|
| 18 |
+
- Компания Нортэма также заменяет замки в домах и машинах на совместимые с чипом
|
| 19 |
+
по цене в 300 фунтов за один замок.
|
| 20 |
+
- Это значит, что диск можно увидеть на глубине 80 футов.
|
| 21 |
+
- source_sentence: There, you can also take baths in wine, pearls, iodine-bromine,
|
| 22 |
+
selenium, and sage-liquorice, depending on what the doctor prescribes for you.
|
| 23 |
+
sentences:
|
| 24 |
+
- Организация даже учредила первый и единственный заповедник летучих мышей в поместье
|
| 25 |
+
Трив в Дамфрис-энд-Галловей, который является домом для восьми из десяти видов
|
| 26 |
+
летучих мышей в Шотландии.
|
| 27 |
+
- Вместе мы гораздо сильнее, чем по отдельности. Экспертный звуковой анализ всех
|
| 28 |
+
записей установит частоту криков летучих мышей, а также какой вид что делает.
|
| 29 |
+
- Там можно принимать также ванны винные, жемчужные, йодобромные, селеновые, шалфейно-лакричные,
|
| 30 |
+
в зависимости от того, что вам назначит врача.
|
| 31 |
+
- source_sentence: But on Pine Ridge, I will always be what is called "wasichu."
|
| 32 |
+
sentences:
|
| 33 |
+
- И я много думал о том, как это может быть применимо к разным уровням реальности,
|
| 34 |
+
скажем, в плане экологии.
|
| 35 |
+
- я всегда буду тем, кого называют ващичу,
|
| 36 |
+
- Так что если мы можем сделать это, то мы можем высвободить ресурсы для закупки
|
| 37 |
+
лекарств, которые действительно нужны для лечения СПИДа, и ВИЧ, и малярии, и для
|
| 38 |
+
предотвращения птичьего гриппа. Спасибо.
|
| 39 |
+
- source_sentence: And Bertie County is no exception to this.
|
| 40 |
+
sentences:
|
| 41 |
+
- И округ Берти - не исключение.
|
| 42 |
+
- Кажется, в природе существует закон о том, что подходить слишком близко к месту,
|
| 43 |
+
откуда ты произошел, опасно.
|
| 44 |
+
- Они устали от договоренностей. Они устали от священных холмов.
|
| 45 |
+
- source_sentence: Transparency is absolutely critical to this.
|
| 46 |
+
sentences:
|
| 47 |
+
- 'Первая: непреклонность местных лидеров к установлению чего-либо меньшего, чем
|
| 48 |
+
их максимальные требования.'
|
| 49 |
+
- Прозрачность - абсолютно критична в этом процессе.
|
| 50 |
+
- Мы покупаем его нашим детям.
|
| 51 |
+
pipeline_tag: sentence-similarity
|
| 52 |
+
library_name: sentence-transformers
|
| 53 |
+
metrics:
|
| 54 |
+
- negative_mse
|
| 55 |
+
- src2trg_accuracy
|
| 56 |
+
- trg2src_accuracy
|
| 57 |
+
- mean_accuracy
|
| 58 |
+
model-index:
|
| 59 |
+
- name: SentenceTransformer
|
| 60 |
+
results:
|
| 61 |
+
- task:
|
| 62 |
+
type: knowledge-distillation
|
| 63 |
+
name: Knowledge Distillation
|
| 64 |
+
dataset:
|
| 65 |
+
name: small content
|
| 66 |
+
type: small_content
|
| 67 |
+
metrics:
|
| 68 |
+
- type: negative_mse
|
| 69 |
+
value: -4.356895923614502
|
| 70 |
+
name: Negative Mse
|
| 71 |
+
- task:
|
| 72 |
+
type: translation
|
| 73 |
+
name: Translation
|
| 74 |
+
dataset:
|
| 75 |
+
name: small content
|
| 76 |
+
type: small_content
|
| 77 |
+
metrics:
|
| 78 |
+
- type: src2trg_accuracy
|
| 79 |
+
value: 0.7375
|
| 80 |
+
name: Src2Trg Accuracy
|
| 81 |
+
- type: trg2src_accuracy
|
| 82 |
+
value: 0.665
|
| 83 |
+
name: Trg2Src Accuracy
|
| 84 |
+
- type: mean_accuracy
|
| 85 |
+
value: 0.70125
|
| 86 |
+
name: Mean Accuracy
|
| 87 |
+
- task:
|
| 88 |
+
type: knowledge-distillation
|
| 89 |
+
name: Knowledge Distillation
|
| 90 |
+
dataset:
|
| 91 |
+
name: big content
|
| 92 |
+
type: big_content
|
| 93 |
+
metrics:
|
| 94 |
+
- type: negative_mse
|
| 95 |
+
value: -3.541424036026001
|
| 96 |
+
name: Negative Mse
|
| 97 |
+
- task:
|
| 98 |
+
type: translation
|
| 99 |
+
name: Translation
|
| 100 |
+
dataset:
|
| 101 |
+
name: big content
|
| 102 |
+
type: big_content
|
| 103 |
+
metrics:
|
| 104 |
+
- type: src2trg_accuracy
|
| 105 |
+
value: 0.8285
|
| 106 |
+
name: Src2Trg Accuracy
|
| 107 |
+
- type: trg2src_accuracy
|
| 108 |
+
value: 0.668
|
| 109 |
+
name: Trg2Src Accuracy
|
| 110 |
+
- type: mean_accuracy
|
| 111 |
+
value: 0.7482500000000001
|
| 112 |
+
name: Mean Accuracy
|
| 113 |
+
---
|
| 114 |
+
|
| 115 |
+
# SentenceTransformer
|
| 116 |
+
|
| 117 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained on the corpus dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 118 |
+
|
| 119 |
+
## Model Details
|
| 120 |
+
|
| 121 |
+
### Model Description
|
| 122 |
+
- **Model Type:** Sentence Transformer
|
| 123 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
| 124 |
+
- **Maximum Sequence Length:** 8192 tokens
|
| 125 |
+
- **Output Dimensionality:** 768 dimensions
|
| 126 |
+
- **Similarity Function:** Cosine Similarity
|
| 127 |
+
- **Training Dataset:**
|
| 128 |
+
- corpus
|
| 129 |
+
<!-- - **Language:** Unknown -->
|
| 130 |
+
<!-- - **License:** Unknown -->
|
| 131 |
+
|
| 132 |
+
### Model Sources
|
| 133 |
+
|
| 134 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 135 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 136 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 137 |
+
|
| 138 |
+
### Full Model Architecture
|
| 139 |
+
|
| 140 |
+
```
|
| 141 |
+
SentenceTransformer(
|
| 142 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
| 143 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 144 |
+
)
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
## Usage
|
| 148 |
+
|
| 149 |
+
### Direct Usage (Sentence Transformers)
|
| 150 |
+
|
| 151 |
+
First install the Sentence Transformers library:
|
| 152 |
+
|
| 153 |
+
```bash
|
| 154 |
+
pip install -U sentence-transformers
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
Then you can load this model and run inference.
|
| 158 |
+
```python
|
| 159 |
+
from sentence_transformers import SentenceTransformer
|
| 160 |
+
|
| 161 |
+
# Download from the 🤗 Hub
|
| 162 |
+
model = SentenceTransformer("whitemouse84/ModernBERT-base-en-ru-v1")
|
| 163 |
+
# Run inference
|
| 164 |
+
sentences = [
|
| 165 |
+
'Transparency is absolutely critical to this.',
|
| 166 |
+
'Прозрачность - абсолютно критична в этом процессе.',
|
| 167 |
+
'Мы покупаем его нашим детям.',
|
| 168 |
+
]
|
| 169 |
+
embeddings = model.encode(sentences)
|
| 170 |
+
print(embeddings.shape)
|
| 171 |
+
# [3, 768]
|
| 172 |
+
|
| 173 |
+
# Get the similarity scores for the embeddings
|
| 174 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 175 |
+
print(similarities.shape)
|
| 176 |
+
# [3, 3]
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
<!--
|
| 180 |
+
### Direct Usage (Transformers)
|
| 181 |
+
|
| 182 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 183 |
+
|
| 184 |
+
</details>
|
| 185 |
+
-->
|
| 186 |
+
|
| 187 |
+
<!--
|
| 188 |
+
### Downstream Usage (Sentence Transformers)
|
| 189 |
+
|
| 190 |
+
You can finetune this model on your own dataset.
|
| 191 |
+
|
| 192 |
+
<details><summary>Click to expand</summary>
|
| 193 |
+
|
| 194 |
+
</details>
|
| 195 |
+
-->
|
| 196 |
+
|
| 197 |
+
<!--
|
| 198 |
+
### Out-of-Scope Use
|
| 199 |
+
|
| 200 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 201 |
+
-->
|
| 202 |
+
|
| 203 |
+
## Evaluation
|
| 204 |
+
|
| 205 |
+
### Metrics
|
| 206 |
+
|
| 207 |
+
#### Knowledge Distillation
|
| 208 |
+
|
| 209 |
+
* Datasets: `small_content` and `big_content`
|
| 210 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
| 211 |
+
|
| 212 |
+
| Metric | small_content | big_content |
|
| 213 |
+
|:-----------------|:--------------|:------------|
|
| 214 |
+
| **negative_mse** | **-4.3569** | **-3.5414** |
|
| 215 |
+
|
| 216 |
+
#### Translation
|
| 217 |
+
|
| 218 |
+
* Datasets: `small_content` and `big_content`
|
| 219 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
| 220 |
+
|
| 221 |
+
| Metric | small_content | big_content |
|
| 222 |
+
|:------------------|:--------------|:------------|
|
| 223 |
+
| src2trg_accuracy | 0.7375 | 0.8285 |
|
| 224 |
+
| trg2src_accuracy | 0.665 | 0.668 |
|
| 225 |
+
| **mean_accuracy** | **0.7013** | **0.7483** |
|
| 226 |
+
|
| 227 |
+
<!--
|
| 228 |
+
## Bias, Risks and Limitations
|
| 229 |
+
|
| 230 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 231 |
+
-->
|
| 232 |
+
|
| 233 |
+
<!--
|
| 234 |
+
### Recommendations
|
| 235 |
+
|
| 236 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 237 |
+
-->
|
| 238 |
+
|
| 239 |
+
## Training Details
|
| 240 |
+
|
| 241 |
+
### Training Dataset
|
| 242 |
+
|
| 243 |
+
#### corpus
|
| 244 |
+
|
| 245 |
+
* Dataset: corpus
|
| 246 |
+
* Size: 3,072,899 training samples
|
| 247 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
| 248 |
+
* Approximate statistics based on the first 1000 samples:
|
| 249 |
+
| | english | non_english | label |
|
| 250 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 251 |
+
| type | string | string | list |
|
| 252 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 29.26 tokens</li><li>max: 133 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 71.46 tokens</li><li>max: 285 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 253 |
+
* Samples:
|
| 254 |
+
| english | non_english | label |
|
| 255 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
|
| 256 |
+
| <code>Hence it can be said that Voit is a well-satisfied customer, and completely convinced of the potential offered by Voortman machines for his firm.</code> | <code>В конечном итоге можно утверждать, что компания Voit довольна своим выбором, ведь она имела возможность убедиться в качественных характеристиках оборудования Voortman.</code> | <code>[0.1702279895544052, -0.6711388826370239, -0.5062062740325928, 0.14078450202941895, 0.15188495814800262, ...]</code> |
|
| 257 |
+
| <code>We want to feel good, we want to be happy, in fact happiness is our birthright.</code> | <code>Мы хотим чувствовать себя хорошо, хотим быть счастливы.</code> | <code>[0.556108295917511, -0.42819586396217346, -0.25372204184532166, 0.099883534014225, 0.7299532294273376, ...]</code> |
|
| 258 |
+
| <code>In Germany, Arcandor - a major holding company in the mail order, retail and tourism industries that reported €21 billion in 2007 sales - threatens to become the first victim of tighter credit terms.</code> | <code>В Германии Arcandor - ключевая холдинговая компания в сфере посылочной и розничной торговли, а также индустрии туризма, в финансовых отчетах которой за 2007 год значился торговый оборот в размере €21 миллиардов - грозит стать первой жертвой ужесточения условий кредитования.</code> | <code>[-0.27140647172927856, -0.5173773169517517, -0.6571329236030579, 0.21765929460525513, -0.01978394016623497, ...]</code> |
|
| 259 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
| 260 |
+
|
| 261 |
+
### Evaluation Datasets
|
| 262 |
+
|
| 263 |
+
#### small_content
|
| 264 |
+
|
| 265 |
+
* Dataset: small_content
|
| 266 |
+
* Size: 2,000 evaluation samples
|
| 267 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
| 268 |
+
* Approximate statistics based on the first 1000 samples:
|
| 269 |
+
| | english | non_english | label |
|
| 270 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 271 |
+
| type | string | string | list |
|
| 272 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 24.13 tokens</li><li>max: 252 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 53.83 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 273 |
+
* Samples:
|
| 274 |
+
| english | non_english | label |
|
| 275 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
|
| 276 |
+
| <code>Thank you so much, Chris.</code> | <code>Спасибо, Крис.</code> | <code>[1.0408389568328857, 0.3253674805164337, -0.12651680409908295, 0.45153331756591797, 0.4052223563194275, ...]</code> |
|
| 277 |
+
| <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>Это огромная честь, получить возможность выйти на эту сцену дважды. Я неимоверно благодарен.</code> | <code>[0.6990637183189392, -0.4462655782699585, -0.5292129516601562, 0.23709823191165924, 0.32307693362236023, ...]</code> |
|
| 278 |
+
| <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>Я в восторге от этой конференции, и я хочу поблагодарить вас всех за благожелательные отзывы о моем позавчерашнем выступлении.</code> | <code>[0.8470447063446045, -0.17461800575256348, -0.7178670167922974, 0.6488378047943115, 0.6101466417312622, ...]</code> |
|
| 279 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
| 280 |
+
|
| 281 |
+
#### big_content
|
| 282 |
+
|
| 283 |
+
* Dataset: big_content
|
| 284 |
+
* Size: 2,000 evaluation samples
|
| 285 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
| 286 |
+
* Approximate statistics based on the first 1000 samples:
|
| 287 |
+
| | english | non_english | label |
|
| 288 |
+
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------|
|
| 289 |
+
| type | string | string | list |
|
| 290 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 43.84 tokens</li><li>max: 141 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 107.9 tokens</li><li>max: 411 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 291 |
+
* Samples:
|
| 292 |
+
| english | non_english | label |
|
| 293 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
|
| 294 |
+
| <code>India has recorded a surge in COVID-19 cases in the past weeks, with over 45,000 new cases detected every day since July 23.</code> | <code>Индия зафиксировала резкий всплеск случаев заражения COVID-19 за последние недели, с 23 июля каждый день выявляется более 45 000 новых случаев.</code> | <code>[-0.12528948485851288, -0.49428656697273254, -0.07556094229221344, 0.8069225549697876, 0.20946118235588074, ...]</code> |
|
| 295 |
+
| <code>A bloom the Red Tide extends approximately 130 miles of coastline from northern Pinellas to southern Lee counties.</code> | <code>Цветение Красного Прилива простирается примерно на 130 миль дволь береговой линии от Пинеллас на севере до округа Ли на юге.</code> | <code>[0.027262285351753235, -0.4401558041572571, -0.3353440463542938, 0.11166133731603622, -0.2294958084821701, ...]</code> |
|
| 296 |
+
| <code>Among those affected by the new rules is Transport Secretary Grant Shapps, who began his holiday in Spain on Saturday.</code> | <code>Среди тех, кого затронули новые правила, оказался министр транспорта Грант Шэппс, у которого в субботу начался отпуск в Испании.</code> | <code>[0.1868007630109787, -0.18781621754169464, -0.48890581727027893, 0.328614205121994, 0.36041054129600525, ...]</code> |
|
| 297 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
| 298 |
+
|
| 299 |
+
### Training Hyperparameters
|
| 300 |
+
#### Non-Default Hyperparameters
|
| 301 |
+
|
| 302 |
+
- `eval_strategy`: steps
|
| 303 |
+
- `per_device_train_batch_size`: 4
|
| 304 |
+
- `per_device_eval_batch_size`: 4
|
| 305 |
+
- `gradient_accumulation_steps`: 16
|
| 306 |
+
- `learning_rate`: 2e-05
|
| 307 |
+
- `num_train_epochs`: 1
|
| 308 |
+
- `warmup_ratio`: 0.1
|
| 309 |
+
- `bf16`: True
|
| 310 |
+
|
| 311 |
+
#### All Hyperparameters
|
| 312 |
+
<details><summary>Click to expand</summary>
|
| 313 |
+
|
| 314 |
+
- `overwrite_output_dir`: False
|
| 315 |
+
- `do_predict`: False
|
| 316 |
+
- `eval_strategy`: steps
|
| 317 |
+
- `prediction_loss_only`: True
|
| 318 |
+
- `per_device_train_batch_size`: 4
|
| 319 |
+
- `per_device_eval_batch_size`: 4
|
| 320 |
+
- `per_gpu_train_batch_size`: None
|
| 321 |
+
- `per_gpu_eval_batch_size`: None
|
| 322 |
+
- `gradient_accumulation_steps`: 16
|
| 323 |
+
- `eval_accumulation_steps`: None
|
| 324 |
+
- `torch_empty_cache_steps`: None
|
| 325 |
+
- `learning_rate`: 2e-05
|
| 326 |
+
- `weight_decay`: 0.0
|
| 327 |
+
- `adam_beta1`: 0.9
|
| 328 |
+
- `adam_beta2`: 0.999
|
| 329 |
+
- `adam_epsilon`: 1e-08
|
| 330 |
+
- `max_grad_norm`: 1.0
|
| 331 |
+
- `num_train_epochs`: 1
|
| 332 |
+
- `max_steps`: -1
|
| 333 |
+
- `lr_scheduler_type`: linear
|
| 334 |
+
- `lr_scheduler_kwargs`: {}
|
| 335 |
+
- `warmup_ratio`: 0.1
|
| 336 |
+
- `warmup_steps`: 0
|
| 337 |
+
- `log_level`: passive
|
| 338 |
+
- `log_level_replica`: warning
|
| 339 |
+
- `log_on_each_node`: True
|
| 340 |
+
- `logging_nan_inf_filter`: True
|
| 341 |
+
- `save_safetensors`: True
|
| 342 |
+
- `save_on_each_node`: False
|
| 343 |
+
- `save_only_model`: False
|
| 344 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 345 |
+
- `no_cuda`: False
|
| 346 |
+
- `use_cpu`: False
|
| 347 |
+
- `use_mps_device`: False
|
| 348 |
+
- `seed`: 42
|
| 349 |
+
- `data_seed`: None
|
| 350 |
+
- `jit_mode_eval`: False
|
| 351 |
+
- `use_ipex`: False
|
| 352 |
+
- `bf16`: True
|
| 353 |
+
- `fp16`: False
|
| 354 |
+
- `fp16_opt_level`: O1
|
| 355 |
+
- `half_precision_backend`: auto
|
| 356 |
+
- `bf16_full_eval`: False
|
| 357 |
+
- `fp16_full_eval`: False
|
| 358 |
+
- `tf32`: None
|
| 359 |
+
- `local_rank`: 0
|
| 360 |
+
- `ddp_backend`: None
|
| 361 |
+
- `tpu_num_cores`: None
|
| 362 |
+
- `tpu_metrics_debug`: False
|
| 363 |
+
- `debug`: []
|
| 364 |
+
- `dataloader_drop_last`: False
|
| 365 |
+
- `dataloader_num_workers`: 0
|
| 366 |
+
- `dataloader_prefetch_factor`: None
|
| 367 |
+
- `past_index`: -1
|
| 368 |
+
- `disable_tqdm`: False
|
| 369 |
+
- `remove_unused_columns`: True
|
| 370 |
+
- `label_names`: None
|
| 371 |
+
- `load_best_model_at_end`: False
|
| 372 |
+
- `ignore_data_skip`: False
|
| 373 |
+
- `fsdp`: []
|
| 374 |
+
- `fsdp_min_num_params`: 0
|
| 375 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 376 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 377 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 378 |
+
- `deepspeed`: None
|
| 379 |
+
- `label_smoothing_factor`: 0.0
|
| 380 |
+
- `optim`: adamw_torch
|
| 381 |
+
- `optim_args`: None
|
| 382 |
+
- `adafactor`: False
|
| 383 |
+
- `group_by_length`: False
|
| 384 |
+
- `length_column_name`: length
|
| 385 |
+
- `ddp_find_unused_parameters`: None
|
| 386 |
+
- `ddp_bucket_cap_mb`: None
|
| 387 |
+
- `ddp_broadcast_buffers`: False
|
| 388 |
+
- `dataloader_pin_memory`: True
|
| 389 |
+
- `dataloader_persistent_workers`: False
|
| 390 |
+
- `skip_memory_metrics`: True
|
| 391 |
+
- `use_legacy_prediction_loop`: False
|
| 392 |
+
- `push_to_hub`: False
|
| 393 |
+
- `resume_from_checkpoint`: None
|
| 394 |
+
- `hub_model_id`: None
|
| 395 |
+
- `hub_strategy`: every_save
|
| 396 |
+
- `hub_private_repo`: None
|
| 397 |
+
- `hub_always_push`: False
|
| 398 |
+
- `gradient_checkpointing`: False
|
| 399 |
+
- `gradient_checkpointing_kwargs`: None
|
| 400 |
+
- `include_inputs_for_metrics`: False
|
| 401 |
+
- `include_for_metrics`: []
|
| 402 |
+
- `eval_do_concat_batches`: True
|
| 403 |
+
- `fp16_backend`: auto
|
| 404 |
+
- `push_to_hub_model_id`: None
|
| 405 |
+
- `push_to_hub_organization`: None
|
| 406 |
+
- `mp_parameters`:
|
| 407 |
+
- `auto_find_batch_size`: False
|
| 408 |
+
- `full_determinism`: False
|
| 409 |
+
- `torchdynamo`: None
|
| 410 |
+
- `ray_scope`: last
|
| 411 |
+
- `ddp_timeout`: 1800
|
| 412 |
+
- `torch_compile`: False
|
| 413 |
+
- `torch_compile_backend`: None
|
| 414 |
+
- `torch_compile_mode`: None
|
| 415 |
+
- `dispatch_batches`: None
|
| 416 |
+
- `split_batches`: None
|
| 417 |
+
- `include_tokens_per_second`: False
|
| 418 |
+
- `include_num_input_tokens_seen`: False
|
| 419 |
+
- `neftune_noise_alpha`: None
|
| 420 |
+
- `optim_target_modules`: None
|
| 421 |
+
- `batch_eval_metrics`: False
|
| 422 |
+
- `eval_on_start`: False
|
| 423 |
+
- `use_liger_kernel`: False
|
| 424 |
+
- `eval_use_gather_object`: False
|
| 425 |
+
- `average_tokens_across_devices`: False
|
| 426 |
+
- `prompts`: None
|
| 427 |
+
- `batch_sampler`: batch_sampler
|
| 428 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 429 |
+
|
| 430 |
+
</details>
|
| 431 |
+
|
| 432 |
+
### Training Logs
|
| 433 |
+
| Epoch | Step | Training Loss | small content loss | big content loss | small_content_negative_mse | small_content_mean_accuracy | big_content_negative_mse | big_content_mean_accuracy |
|
| 434 |
+
|:------:|:----:|:-------------:|:------------------:|:----------------:|:--------------------------:|:---------------------------:|:------------------------:|:-------------------------:|
|
| 435 |
+
| 0.0128 | 100 | 0.4387 | - | - | - | - | - | - |
|
| 436 |
+
| 0.0256 | 200 | 0.4445 | - | - | - | - | - | - |
|
| 437 |
+
| 0.0384 | 300 | 0.4366 | - | - | - | - | - | - |
|
| 438 |
+
| 0.0512 | 400 | 0.444 | - | - | - | - | - | - |
|
| 439 |
+
| 0.064 | 500 | 0.4539 | - | - | - | - | - | - |
|
| 440 |
+
| 0.0768 | 600 | 0.4586 | - | - | - | - | - | - |
|
| 441 |
+
| 0.0896 | 700 | 0.452 | - | - | - | - | - | - |
|
| 442 |
+
| 0.1024 | 800 | 0.455 | - | - | - | - | - | - |
|
| 443 |
+
| 0.1152 | 900 | 0.4566 | - | - | - | - | - | - |
|
| 444 |
+
| 0.128 | 1000 | 0.464 | - | - | - | - | - | - |
|
| 445 |
+
| 0.1408 | 1100 | 0.4606 | - | - | - | - | - | - |
|
| 446 |
+
| 0.1536 | 1200 | 0.4545 | - | - | - | - | - | - |
|
| 447 |
+
| 0.1664 | 1300 | 0.452 | - | - | - | - | - | - |
|
| 448 |
+
| 0.1792 | 1400 | 0.4572 | - | - | - | - | - | - |
|
| 449 |
+
| 0.192 | 1500 | 0.449 | - | - | - | - | - | - |
|
| 450 |
+
| 0.2048 | 1600 | 0.441 | - | - | - | - | - | - |
|
| 451 |
+
| 0.2176 | 1700 | 0.4409 | - | - | - | - | - | - |
|
| 452 |
+
| 0.2304 | 1800 | 0.4518 | - | - | - | - | - | - |
|
| 453 |
+
| 0.2432 | 1900 | 0.4522 | - | - | - | - | - | - |
|
| 454 |
+
| 0.256 | 2000 | 0.4551 | 0.0242 | 0.0196 | -4.4742 | 0.6918 | -3.6582 | 0.6813 |
|
| 455 |
+
| 0.2688 | 2100 | 0.4517 | - | - | - | - | - | - |
|
| 456 |
+
| 0.2816 | 2200 | 0.4504 | - | - | - | - | - | - |
|
| 457 |
+
| 0.2944 | 2300 | 0.4435 | - | - | - | - | - | - |
|
| 458 |
+
| 0.3072 | 2400 | 0.4445 | - | - | - | - | - | - |
|
| 459 |
+
| 0.32 | 2500 | 0.4356 | - | - | - | - | - | - |
|
| 460 |
+
| 0.3328 | 2600 | 0.4358 | - | - | - | - | - | - |
|
| 461 |
+
| 0.3456 | 2700 | 0.4442 | - | - | - | - | - | - |
|
| 462 |
+
| 0.3584 | 2800 | 0.4453 | - | - | - | - | - | - |
|
| 463 |
+
| 0.3712 | 2900 | 0.4519 | - | - | - | - | - | - |
|
| 464 |
+
| 0.384 | 3000 | 0.4328 | - | - | - | - | - | - |
|
| 465 |
+
| 0.3968 | 3100 | 0.4449 | - | - | - | - | - | - |
|
| 466 |
+
| 0.4096 | 3200 | 0.4463 | - | - | - | - | - | - |
|
| 467 |
+
| 0.4224 | 3300 | 0.4374 | - | - | - | - | - | - |
|
| 468 |
+
| 0.4352 | 3400 | 0.4377 | - | - | - | - | - | - |
|
| 469 |
+
| 0.448 | 3500 | 0.4461 | - | - | - | - | - | - |
|
| 470 |
+
| 0.4608 | 3600 | 0.4506 | - | - | - | - | - | - |
|
| 471 |
+
| 0.4736 | 3700 | 0.4382 | - | - | - | - | - | - |
|
| 472 |
+
| 0.4864 | 3800 | 0.4407 | - | - | - | - | - | - |
|
| 473 |
+
| 0.4992 | 3900 | 0.4481 | - | - | - | - | - | - |
|
| 474 |
+
| 0.512 | 4000 | 0.4332 | 0.0239 | 0.0196 | -4.4136 | 0.7030 | -3.6931 | 0.6658 |
|
| 475 |
+
| 0.5248 | 4100 | 0.4444 | - | - | - | - | - | - |
|
| 476 |
+
| 0.5376 | 4200 | 0.4444 | - | - | - | - | - | - |
|
| 477 |
+
| 0.5504 | 4300 | 0.4389 | - | - | - | - | - | - |
|
| 478 |
+
| 0.5632 | 4400 | 0.4385 | - | - | - | - | - | - |
|
| 479 |
+
| 0.576 | 4500 | 0.4399 | - | - | - | - | - | - |
|
| 480 |
+
| 0.5888 | 4600 | 0.4306 | - | - | - | - | - | - |
|
| 481 |
+
| 0.6016 | 4700 | 0.435 | - | - | - | - | - | - |
|
| 482 |
+
| 0.6144 | 4800 | 0.4307 | - | - | - | - | - | - |
|
| 483 |
+
| 0.6272 | 4900 | 0.4399 | - | - | - | - | - | - |
|
| 484 |
+
| 0.64 | 5000 | 0.4401 | - | - | - | - | - | - |
|
| 485 |
+
| 0.6528 | 5100 | 0.4337 | - | - | - | - | - | - |
|
| 486 |
+
| 0.6656 | 5200 | 0.4369 | - | - | - | - | - | - |
|
| 487 |
+
| 0.6784 | 5300 | 0.4392 | - | - | - | - | - | - |
|
| 488 |
+
| 0.6912 | 5400 | 0.4356 | - | - | - | - | - | - |
|
| 489 |
+
| 0.704 | 5500 | 0.4266 | - | - | - | - | - | - |
|
| 490 |
+
| 0.7168 | 5600 | 0.4303 | - | - | - | - | - | - |
|
| 491 |
+
| 0.7296 | 5700 | 0.4241 | - | - | - | - | - | - |
|
| 492 |
+
| 0.7424 | 5800 | 0.4361 | - | - | - | - | - | - |
|
| 493 |
+
| 0.7552 | 5900 | 0.4256 | - | - | - | - | - | - |
|
| 494 |
+
| 0.768 | 6000 | 0.4303 | 0.0234 | 0.0188 | -4.3569 | 0.7013 | -3.5414 | 0.7483 |
|
| 495 |
+
| 0.7808 | 6100 | 0.4221 | - | - | - | - | - | - |
|
| 496 |
+
| 0.7936 | 6200 | 0.421 | - | - | - | - | - | - |
|
| 497 |
+
| 0.8064 | 6300 | 0.4418 | - | - | - | - | - | - |
|
| 498 |
+
| 0.8192 | 6400 | 0.4225 | - | - | - | - | - | - |
|
| 499 |
+
| 0.832 | 6500 | 0.4271 | - | - | - | - | - | - |
|
| 500 |
+
| 0.8448 | 6600 | 0.4291 | - | - | - | - | - | - |
|
| 501 |
+
| 0.8576 | 6700 | 0.4192 | - | - | - | - | - | - |
|
| 502 |
+
| 0.8704 | 6800 | 0.4335 | - | - | - | - | - | - |
|
| 503 |
+
| 0.8832 | 6900 | 0.4291 | - | - | - | - | - | - |
|
| 504 |
+
| 0.896 | 7000 | 0.432 | - | - | - | - | - | - |
|
| 505 |
+
| 0.9088 | 7100 | 0.432 | - | - | - | - | - | - |
|
| 506 |
+
| 0.9216 | 7200 | 0.4247 | - | - | - | - | - | - |
|
| 507 |
+
| 0.9344 | 7300 | 0.4259 | - | - | - | - | - | - |
|
| 508 |
+
| 0.9472 | 7400 | 0.4235 | - | - | - | - | - | - |
|
| 509 |
+
| 0.96 | 7500 | 0.4181 | - | - | - | - | - | - |
|
| 510 |
+
| 0.9728 | 7600 | 0.43 | - | - | - | - | - | - |
|
| 511 |
+
| 0.9856 | 7700 | 0.4189 | - | - | - | - | - | - |
|
| 512 |
+
| 0.9984 | 7800 | 0.4188 | - | - | - | - | - | - |
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
### Framework Versions
|
| 516 |
+
- Python: 3.13.2
|
| 517 |
+
- Sentence Transformers: 3.4.1
|
| 518 |
+
- Transformers: 4.49.0
|
| 519 |
+
- PyTorch: 2.6.0+cu126
|
| 520 |
+
- Accelerate: 1.4.0
|
| 521 |
+
- Datasets: 3.3.2
|
| 522 |
+
- Tokenizers: 0.21.0
|
| 523 |
+
|
| 524 |
+
## Citation
|
| 525 |
+
|
| 526 |
+
### BibTeX
|
| 527 |
+
|
| 528 |
+
#### Sentence Transformers
|
| 529 |
+
```bibtex
|
| 530 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 531 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 532 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 533 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 534 |
+
month = "11",
|
| 535 |
+
year = "2019",
|
| 536 |
+
publisher = "Association for Computational Linguistics",
|
| 537 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 538 |
+
}
|
| 539 |
+
```
|
| 540 |
+
|
| 541 |
+
#### MSELoss
|
| 542 |
+
```bibtex
|
| 543 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
| 544 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
| 545 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 546 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
| 547 |
+
month = "11",
|
| 548 |
+
year = "2020",
|
| 549 |
+
publisher = "Association for Computational Linguistics",
|
| 550 |
+
url = "https://arxiv.org/abs/2004.09813",
|
| 551 |
+
}
|
| 552 |
+
```
|
| 553 |
+
|
| 554 |
+
<!--
|
| 555 |
+
## Glossary
|
| 556 |
+
|
| 557 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 558 |
+
-->
|
| 559 |
+
|
| 560 |
+
<!--
|
| 561 |
+
## Model Card Authors
|
| 562 |
+
|
| 563 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 564 |
+
-->
|
| 565 |
+
|
| 566 |
+
<!--
|
| 567 |
+
## Model Card Contact
|
| 568 |
+
|
| 569 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 570 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./model_checkpoints/mb_check_4",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"ModernBertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 50281,
|
| 9 |
+
"classifier_activation": "gelu",
|
| 10 |
+
"classifier_bias": false,
|
| 11 |
+
"classifier_dropout": 0.0,
|
| 12 |
+
"classifier_pooling": "mean",
|
| 13 |
+
"cls_token_id": 50281,
|
| 14 |
+
"decoder_bias": true,
|
| 15 |
+
"deterministic_flash_attn": false,
|
| 16 |
+
"embedding_dropout": 0.0,
|
| 17 |
+
"eos_token_id": 50282,
|
| 18 |
+
"global_attn_every_n_layers": 3,
|
| 19 |
+
"global_rope_theta": 160000.0,
|
| 20 |
+
"gradient_checkpointing": false,
|
| 21 |
+
"hidden_activation": "gelu",
|
| 22 |
+
"hidden_size": 768,
|
| 23 |
+
"initializer_cutoff_factor": 2.0,
|
| 24 |
+
"initializer_range": 0.02,
|
| 25 |
+
"intermediate_size": 1152,
|
| 26 |
+
"layer_norm_eps": 1e-05,
|
| 27 |
+
"local_attention": 128,
|
| 28 |
+
"local_rope_theta": 10000.0,
|
| 29 |
+
"max_position_embeddings": 8192,
|
| 30 |
+
"mlp_bias": false,
|
| 31 |
+
"mlp_dropout": 0.0,
|
| 32 |
+
"model_type": "modernbert",
|
| 33 |
+
"norm_bias": false,
|
| 34 |
+
"norm_eps": 1e-05,
|
| 35 |
+
"num_attention_heads": 12,
|
| 36 |
+
"num_hidden_layers": 22,
|
| 37 |
+
"pad_token_id": 50283,
|
| 38 |
+
"position_embedding_type": "absolute",
|
| 39 |
+
"reference_compile": false,
|
| 40 |
+
"repad_logits_with_grad": false,
|
| 41 |
+
"sep_token_id": 50282,
|
| 42 |
+
"sparse_pred_ignore_index": -100,
|
| 43 |
+
"sparse_prediction": false,
|
| 44 |
+
"torch_dtype": "float32",
|
| 45 |
+
"transformers_version": "4.49.0",
|
| 46 |
+
"vocab_size": 50368
|
| 47 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.4.1",
|
| 4 |
+
"transformers": "4.49.0",
|
| 5 |
+
"pytorch": "2.6.0+cu126"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7584a5f14b2e4f7a1bfad3b934cd805b6061cf6596f458b61beb0233ec13471d
|
| 3 |
+
size 596070136
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 8192,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": true,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,952 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "|||IP_ADDRESS|||",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": true,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": false
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<|padding|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"50254": {
|
| 20 |
+
"content": " ",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": true,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": false
|
| 26 |
+
},
|
| 27 |
+
"50255": {
|
| 28 |
+
"content": " ",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": false
|
| 34 |
+
},
|
| 35 |
+
"50256": {
|
| 36 |
+
"content": " ",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": true,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": false
|
| 42 |
+
},
|
| 43 |
+
"50257": {
|
| 44 |
+
"content": " ",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": false
|
| 50 |
+
},
|
| 51 |
+
"50258": {
|
| 52 |
+
"content": " ",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": false
|
| 58 |
+
},
|
| 59 |
+
"50259": {
|
| 60 |
+
"content": " ",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": true,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": false
|
| 66 |
+
},
|
| 67 |
+
"50260": {
|
| 68 |
+
"content": " ",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": true,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": false
|
| 74 |
+
},
|
| 75 |
+
"50261": {
|
| 76 |
+
"content": " ",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": true,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": false
|
| 82 |
+
},
|
| 83 |
+
"50262": {
|
| 84 |
+
"content": " ",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": true,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": false
|
| 90 |
+
},
|
| 91 |
+
"50263": {
|
| 92 |
+
"content": " ",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": true,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": false
|
| 98 |
+
},
|
| 99 |
+
"50264": {
|
| 100 |
+
"content": " ",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": true,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": false
|
| 106 |
+
},
|
| 107 |
+
"50265": {
|
| 108 |
+
"content": " ",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": true,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": false
|
| 114 |
+
},
|
| 115 |
+
"50266": {
|
| 116 |
+
"content": " ",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": true,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": false
|
| 122 |
+
},
|
| 123 |
+
"50267": {
|
| 124 |
+
"content": " ",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": true,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": false
|
| 130 |
+
},
|
| 131 |
+
"50268": {
|
| 132 |
+
"content": " ",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": true,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": false
|
| 138 |
+
},
|
| 139 |
+
"50269": {
|
| 140 |
+
"content": " ",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": true,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": false
|
| 146 |
+
},
|
| 147 |
+
"50270": {
|
| 148 |
+
"content": " ",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": true,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": false
|
| 154 |
+
},
|
| 155 |
+
"50271": {
|
| 156 |
+
"content": " ",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": true,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": false
|
| 162 |
+
},
|
| 163 |
+
"50272": {
|
| 164 |
+
"content": " ",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": true,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": false
|
| 170 |
+
},
|
| 171 |
+
"50273": {
|
| 172 |
+
"content": " ",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": true,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": false
|
| 178 |
+
},
|
| 179 |
+
"50274": {
|
| 180 |
+
"content": " ",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": true,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": false
|
| 186 |
+
},
|
| 187 |
+
"50275": {
|
| 188 |
+
"content": " ",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": true,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": false
|
| 194 |
+
},
|
| 195 |
+
"50276": {
|
| 196 |
+
"content": " ",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": true,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": false
|
| 202 |
+
},
|
| 203 |
+
"50277": {
|
| 204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": true,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": false
|
| 210 |
+
},
|
| 211 |
+
"50278": {
|
| 212 |
+
"content": "|||PHONE_NUMBER|||",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": true,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": false
|
| 218 |
+
},
|
| 219 |
+
"50279": {
|
| 220 |
+
"content": "<|endoftext|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"50280": {
|
| 228 |
+
"content": "[UNK]",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"50281": {
|
| 236 |
+
"content": "[CLS]",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"50282": {
|
| 244 |
+
"content": "[SEP]",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"50283": {
|
| 252 |
+
"content": "[PAD]",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"50284": {
|
| 260 |
+
"content": "[MASK]",
|
| 261 |
+
"lstrip": true,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"50285": {
|
| 268 |
+
"content": "[unused0]",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": true,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": false
|
| 274 |
+
},
|
| 275 |
+
"50286": {
|
| 276 |
+
"content": "[unused1]",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": true,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": false
|
| 282 |
+
},
|
| 283 |
+
"50287": {
|
| 284 |
+
"content": "[unused2]",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": true,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": false
|
| 290 |
+
},
|
| 291 |
+
"50288": {
|
| 292 |
+
"content": "[unused3]",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": true,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": false
|
| 298 |
+
},
|
| 299 |
+
"50289": {
|
| 300 |
+
"content": "[unused4]",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": true,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": false
|
| 306 |
+
},
|
| 307 |
+
"50290": {
|
| 308 |
+
"content": "[unused5]",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": true,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": false
|
| 314 |
+
},
|
| 315 |
+
"50291": {
|
| 316 |
+
"content": "[unused6]",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": true,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": false
|
| 322 |
+
},
|
| 323 |
+
"50292": {
|
| 324 |
+
"content": "[unused7]",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": true,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": false
|
| 330 |
+
},
|
| 331 |
+
"50293": {
|
| 332 |
+
"content": "[unused8]",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": true,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": false
|
| 338 |
+
},
|
| 339 |
+
"50294": {
|
| 340 |
+
"content": "[unused9]",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": true,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": false
|
| 346 |
+
},
|
| 347 |
+
"50295": {
|
| 348 |
+
"content": "[unused10]",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": true,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": false
|
| 354 |
+
},
|
| 355 |
+
"50296": {
|
| 356 |
+
"content": "[unused11]",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": true,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": false
|
| 362 |
+
},
|
| 363 |
+
"50297": {
|
| 364 |
+
"content": "[unused12]",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": true,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": false
|
| 370 |
+
},
|
| 371 |
+
"50298": {
|
| 372 |
+
"content": "[unused13]",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": true,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": false
|
| 378 |
+
},
|
| 379 |
+
"50299": {
|
| 380 |
+
"content": "[unused14]",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": true,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": false
|
| 386 |
+
},
|
| 387 |
+
"50300": {
|
| 388 |
+
"content": "[unused15]",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": true,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": false
|
| 394 |
+
},
|
| 395 |
+
"50301": {
|
| 396 |
+
"content": "[unused16]",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": true,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": false
|
| 402 |
+
},
|
| 403 |
+
"50302": {
|
| 404 |
+
"content": "[unused17]",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": true,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": false
|
| 410 |
+
},
|
| 411 |
+
"50303": {
|
| 412 |
+
"content": "[unused18]",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": true,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": false
|
| 418 |
+
},
|
| 419 |
+
"50304": {
|
| 420 |
+
"content": "[unused19]",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": true,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": false
|
| 426 |
+
},
|
| 427 |
+
"50305": {
|
| 428 |
+
"content": "[unused20]",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": true,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": false
|
| 434 |
+
},
|
| 435 |
+
"50306": {
|
| 436 |
+
"content": "[unused21]",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": true,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": false
|
| 442 |
+
},
|
| 443 |
+
"50307": {
|
| 444 |
+
"content": "[unused22]",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": true,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": false
|
| 450 |
+
},
|
| 451 |
+
"50308": {
|
| 452 |
+
"content": "[unused23]",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": true,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": false
|
| 458 |
+
},
|
| 459 |
+
"50309": {
|
| 460 |
+
"content": "[unused24]",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": true,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": false
|
| 466 |
+
},
|
| 467 |
+
"50310": {
|
| 468 |
+
"content": "[unused25]",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": true,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": false
|
| 474 |
+
},
|
| 475 |
+
"50311": {
|
| 476 |
+
"content": "[unused26]",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": true,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": false
|
| 482 |
+
},
|
| 483 |
+
"50312": {
|
| 484 |
+
"content": "[unused27]",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": true,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": false
|
| 490 |
+
},
|
| 491 |
+
"50313": {
|
| 492 |
+
"content": "[unused28]",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": true,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": false
|
| 498 |
+
},
|
| 499 |
+
"50314": {
|
| 500 |
+
"content": "[unused29]",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": true,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": false
|
| 506 |
+
},
|
| 507 |
+
"50315": {
|
| 508 |
+
"content": "[unused30]",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": true,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": false
|
| 514 |
+
},
|
| 515 |
+
"50316": {
|
| 516 |
+
"content": "[unused31]",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": true,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": false
|
| 522 |
+
},
|
| 523 |
+
"50317": {
|
| 524 |
+
"content": "[unused32]",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": true,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": false
|
| 530 |
+
},
|
| 531 |
+
"50318": {
|
| 532 |
+
"content": "[unused33]",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": true,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": false
|
| 538 |
+
},
|
| 539 |
+
"50319": {
|
| 540 |
+
"content": "[unused34]",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": true,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": false
|
| 546 |
+
},
|
| 547 |
+
"50320": {
|
| 548 |
+
"content": "[unused35]",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": true,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": false
|
| 554 |
+
},
|
| 555 |
+
"50321": {
|
| 556 |
+
"content": "[unused36]",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": true,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": false
|
| 562 |
+
},
|
| 563 |
+
"50322": {
|
| 564 |
+
"content": "[unused37]",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": true,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": false
|
| 570 |
+
},
|
| 571 |
+
"50323": {
|
| 572 |
+
"content": "[unused38]",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": true,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": false
|
| 578 |
+
},
|
| 579 |
+
"50324": {
|
| 580 |
+
"content": "[unused39]",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": true,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": false
|
| 586 |
+
},
|
| 587 |
+
"50325": {
|
| 588 |
+
"content": "[unused40]",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": true,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": false
|
| 594 |
+
},
|
| 595 |
+
"50326": {
|
| 596 |
+
"content": "[unused41]",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": true,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": false
|
| 602 |
+
},
|
| 603 |
+
"50327": {
|
| 604 |
+
"content": "[unused42]",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": true,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": false
|
| 610 |
+
},
|
| 611 |
+
"50328": {
|
| 612 |
+
"content": "[unused43]",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": true,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": false
|
| 618 |
+
},
|
| 619 |
+
"50329": {
|
| 620 |
+
"content": "[unused44]",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": true,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": false
|
| 626 |
+
},
|
| 627 |
+
"50330": {
|
| 628 |
+
"content": "[unused45]",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": true,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": false
|
| 634 |
+
},
|
| 635 |
+
"50331": {
|
| 636 |
+
"content": "[unused46]",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": true,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": false
|
| 642 |
+
},
|
| 643 |
+
"50332": {
|
| 644 |
+
"content": "[unused47]",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": true,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": false
|
| 650 |
+
},
|
| 651 |
+
"50333": {
|
| 652 |
+
"content": "[unused48]",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": true,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": false
|
| 658 |
+
},
|
| 659 |
+
"50334": {
|
| 660 |
+
"content": "[unused49]",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": true,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": false
|
| 666 |
+
},
|
| 667 |
+
"50335": {
|
| 668 |
+
"content": "[unused50]",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": true,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": false
|
| 674 |
+
},
|
| 675 |
+
"50336": {
|
| 676 |
+
"content": "[unused51]",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": true,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": false
|
| 682 |
+
},
|
| 683 |
+
"50337": {
|
| 684 |
+
"content": "[unused52]",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": true,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": false
|
| 690 |
+
},
|
| 691 |
+
"50338": {
|
| 692 |
+
"content": "[unused53]",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": true,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": false
|
| 698 |
+
},
|
| 699 |
+
"50339": {
|
| 700 |
+
"content": "[unused54]",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": true,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": false
|
| 706 |
+
},
|
| 707 |
+
"50340": {
|
| 708 |
+
"content": "[unused55]",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": true,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": false
|
| 714 |
+
},
|
| 715 |
+
"50341": {
|
| 716 |
+
"content": "[unused56]",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": true,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": false
|
| 722 |
+
},
|
| 723 |
+
"50342": {
|
| 724 |
+
"content": "[unused57]",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": true,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": false
|
| 730 |
+
},
|
| 731 |
+
"50343": {
|
| 732 |
+
"content": "[unused58]",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": true,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": false
|
| 738 |
+
},
|
| 739 |
+
"50344": {
|
| 740 |
+
"content": "[unused59]",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": true,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": false
|
| 746 |
+
},
|
| 747 |
+
"50345": {
|
| 748 |
+
"content": "[unused60]",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": true,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": false
|
| 754 |
+
},
|
| 755 |
+
"50346": {
|
| 756 |
+
"content": "[unused61]",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": true,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": false
|
| 762 |
+
},
|
| 763 |
+
"50347": {
|
| 764 |
+
"content": "[unused62]",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": true,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": false
|
| 770 |
+
},
|
| 771 |
+
"50348": {
|
| 772 |
+
"content": "[unused63]",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": true,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": false
|
| 778 |
+
},
|
| 779 |
+
"50349": {
|
| 780 |
+
"content": "[unused64]",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": true,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": false
|
| 786 |
+
},
|
| 787 |
+
"50350": {
|
| 788 |
+
"content": "[unused65]",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": true,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": false
|
| 794 |
+
},
|
| 795 |
+
"50351": {
|
| 796 |
+
"content": "[unused66]",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": true,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": false
|
| 802 |
+
},
|
| 803 |
+
"50352": {
|
| 804 |
+
"content": "[unused67]",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": true,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": false
|
| 810 |
+
},
|
| 811 |
+
"50353": {
|
| 812 |
+
"content": "[unused68]",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": true,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": false
|
| 818 |
+
},
|
| 819 |
+
"50354": {
|
| 820 |
+
"content": "[unused69]",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": true,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": false
|
| 826 |
+
},
|
| 827 |
+
"50355": {
|
| 828 |
+
"content": "[unused70]",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": true,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": false
|
| 834 |
+
},
|
| 835 |
+
"50356": {
|
| 836 |
+
"content": "[unused71]",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": true,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": false
|
| 842 |
+
},
|
| 843 |
+
"50357": {
|
| 844 |
+
"content": "[unused72]",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": true,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": false
|
| 850 |
+
},
|
| 851 |
+
"50358": {
|
| 852 |
+
"content": "[unused73]",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": true,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": false
|
| 858 |
+
},
|
| 859 |
+
"50359": {
|
| 860 |
+
"content": "[unused74]",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": true,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": false
|
| 866 |
+
},
|
| 867 |
+
"50360": {
|
| 868 |
+
"content": "[unused75]",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": true,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": false
|
| 874 |
+
},
|
| 875 |
+
"50361": {
|
| 876 |
+
"content": "[unused76]",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": true,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": false
|
| 882 |
+
},
|
| 883 |
+
"50362": {
|
| 884 |
+
"content": "[unused77]",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": true,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": false
|
| 890 |
+
},
|
| 891 |
+
"50363": {
|
| 892 |
+
"content": "[unused78]",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": true,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": false
|
| 898 |
+
},
|
| 899 |
+
"50364": {
|
| 900 |
+
"content": "[unused79]",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": true,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": false
|
| 906 |
+
},
|
| 907 |
+
"50365": {
|
| 908 |
+
"content": "[unused80]",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": true,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": false
|
| 914 |
+
},
|
| 915 |
+
"50366": {
|
| 916 |
+
"content": "[unused81]",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": true,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": false
|
| 922 |
+
},
|
| 923 |
+
"50367": {
|
| 924 |
+
"content": "[unused82]",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": true,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": false
|
| 930 |
+
}
|
| 931 |
+
},
|
| 932 |
+
"clean_up_tokenization_spaces": true,
|
| 933 |
+
"cls_token": "[CLS]",
|
| 934 |
+
"extra_special_tokens": {},
|
| 935 |
+
"mask_token": "[MASK]",
|
| 936 |
+
"max_length": 8192,
|
| 937 |
+
"model_input_names": [
|
| 938 |
+
"input_ids",
|
| 939 |
+
"attention_mask"
|
| 940 |
+
],
|
| 941 |
+
"model_max_length": 8192,
|
| 942 |
+
"pad_to_multiple_of": null,
|
| 943 |
+
"pad_token": "[PAD]",
|
| 944 |
+
"pad_token_type_id": 0,
|
| 945 |
+
"padding_side": "right",
|
| 946 |
+
"sep_token": "[SEP]",
|
| 947 |
+
"stride": 0,
|
| 948 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
| 949 |
+
"truncation_side": "right",
|
| 950 |
+
"truncation_strategy": "longest_first",
|
| 951 |
+
"unk_token": "[UNK]"
|
| 952 |
+
}
|