Upload folder using huggingface_hub
Browse files- config.json +38 -0
- configuration_eat.py +66 -0
- eat_model.py +99 -0
- model.safetensors +3 -0
- model_core.py +224 -0
- modeling_eat.py +18 -0
config.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_dropout": 0.0,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"EATModel"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoModel": "modeling_eat.EATModel",
|
| 8 |
+
"AutoConfig": "configuration_eat.EATConfig"
|
| 9 |
+
},
|
| 10 |
+
"attn_drop_rate": 0.0,
|
| 11 |
+
"depth": 12,
|
| 12 |
+
"drop_rate": 0.0,
|
| 13 |
+
"embed_dim": 768,
|
| 14 |
+
"end_drop_path_rate": 0.0,
|
| 15 |
+
"fixed_positions": true,
|
| 16 |
+
"img_size": [
|
| 17 |
+
1024,
|
| 18 |
+
128
|
| 19 |
+
],
|
| 20 |
+
"in_chans": 1,
|
| 21 |
+
"layer_norm_first": false,
|
| 22 |
+
"max_length": 768,
|
| 23 |
+
"mel_bins": 128,
|
| 24 |
+
"mlp_ratio": 4.0,
|
| 25 |
+
"model_type": "eat",
|
| 26 |
+
"model_variant": "pretrain",
|
| 27 |
+
"norm_affine": true,
|
| 28 |
+
"norm_eps": 1e-06,
|
| 29 |
+
"num_classes": 527,
|
| 30 |
+
"num_heads": 12,
|
| 31 |
+
"patch_size": 16,
|
| 32 |
+
"post_mlp_drop": 0.0,
|
| 33 |
+
"qkv_bias": true,
|
| 34 |
+
"start_drop_path_rate": 0.0,
|
| 35 |
+
"stride": 16,
|
| 36 |
+
"torch_dtype": "float32",
|
| 37 |
+
"transformers_version": "4.51.3"
|
| 38 |
+
}
|
configuration_eat.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# configuration_eat.py
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
class EATConfig(PretrainedConfig):
|
| 6 |
+
model_type = "eat"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
embed_dim=768,
|
| 11 |
+
depth=12,
|
| 12 |
+
num_heads=12,
|
| 13 |
+
patch_size=16,
|
| 14 |
+
stride=16,
|
| 15 |
+
in_chans=1,
|
| 16 |
+
mel_bins=128,
|
| 17 |
+
max_length=768,
|
| 18 |
+
num_classes=527,
|
| 19 |
+
model_variant="pretrain", # or "finetune"
|
| 20 |
+
|
| 21 |
+
mlp_ratio=4.0,
|
| 22 |
+
qkv_bias=True,
|
| 23 |
+
drop_rate=0.0,
|
| 24 |
+
attn_drop_rate=0.0,
|
| 25 |
+
activation_dropout=0.0,
|
| 26 |
+
post_mlp_drop=0.0,
|
| 27 |
+
start_drop_path_rate=0.0,
|
| 28 |
+
end_drop_path_rate=0.0,
|
| 29 |
+
|
| 30 |
+
layer_norm_first=False,
|
| 31 |
+
norm_eps=1e-6,
|
| 32 |
+
norm_affine=True,
|
| 33 |
+
fixed_positions=True,
|
| 34 |
+
|
| 35 |
+
img_size=(1024, 128), # (target_length, mel_bins)
|
| 36 |
+
|
| 37 |
+
**kwargs,
|
| 38 |
+
):
|
| 39 |
+
super().__init__(**kwargs)
|
| 40 |
+
|
| 41 |
+
self.embed_dim = embed_dim
|
| 42 |
+
self.depth = depth
|
| 43 |
+
self.num_heads = num_heads
|
| 44 |
+
self.patch_size = patch_size
|
| 45 |
+
self.stride = stride
|
| 46 |
+
self.in_chans = in_chans
|
| 47 |
+
self.mel_bins = mel_bins
|
| 48 |
+
self.max_length = max_length
|
| 49 |
+
self.num_classes = num_classes
|
| 50 |
+
self.model_variant = model_variant
|
| 51 |
+
|
| 52 |
+
self.mlp_ratio = mlp_ratio
|
| 53 |
+
self.qkv_bias = qkv_bias
|
| 54 |
+
self.drop_rate = drop_rate
|
| 55 |
+
self.attn_drop_rate = attn_drop_rate
|
| 56 |
+
self.activation_dropout = activation_dropout
|
| 57 |
+
self.post_mlp_drop = post_mlp_drop
|
| 58 |
+
self.start_drop_path_rate = start_drop_path_rate
|
| 59 |
+
self.end_drop_path_rate = end_drop_path_rate
|
| 60 |
+
|
| 61 |
+
self.layer_norm_first = layer_norm_first
|
| 62 |
+
self.norm_eps = norm_eps
|
| 63 |
+
self.norm_affine = norm_affine
|
| 64 |
+
self.fixed_positions = fixed_positions
|
| 65 |
+
|
| 66 |
+
self.img_size = img_size
|
eat_model.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from timm.models.layers import trunc_normal_
|
| 4 |
+
from functools import partial
|
| 5 |
+
import numpy as np
|
| 6 |
+
from model_core import (
|
| 7 |
+
PatchEmbed_new,
|
| 8 |
+
get_2d_sincos_pos_embed_flexible,
|
| 9 |
+
FixedPositionalEncoder,
|
| 10 |
+
AltBlock
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
class EAT(nn.Module):
|
| 14 |
+
def __init__(self, config):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.config = config
|
| 17 |
+
self.mode = config.model_variant # "pretrain" or "finetune"
|
| 18 |
+
|
| 19 |
+
# === Embedding / Encoder ===
|
| 20 |
+
self.local_encoder = PatchEmbed_new(
|
| 21 |
+
img_size=config.img_size,
|
| 22 |
+
patch_size=config.patch_size,
|
| 23 |
+
in_chans=config.in_chans,
|
| 24 |
+
embed_dim=config.embed_dim,
|
| 25 |
+
stride=config.stride
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
self.extra_tokens = nn.Parameter(torch.zeros(1, 1, config.embed_dim))
|
| 29 |
+
self.pos_drop = nn.Dropout(p=config.drop_rate, inplace=True)
|
| 30 |
+
trunc_normal_(self.extra_tokens, std=.02)
|
| 31 |
+
|
| 32 |
+
self.fixed_positional_encoder = (
|
| 33 |
+
FixedPositionalEncoder(self.build_sincos_pos_embed()) if config.fixed_positions else None
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
norm_layer = partial(nn.LayerNorm, eps=config.norm_eps, elementwise_affine=config.norm_affine)
|
| 37 |
+
dpr = np.linspace(config.start_drop_path_rate, config.end_drop_path_rate, config.depth)
|
| 38 |
+
self.blocks = nn.ModuleList([
|
| 39 |
+
AltBlock(config.embed_dim, config.num_heads, config.mlp_ratio,
|
| 40 |
+
qkv_bias=config.qkv_bias, drop=config.drop_rate,
|
| 41 |
+
attn_drop=config.attn_drop_rate, mlp_drop=config.activation_dropout,
|
| 42 |
+
post_mlp_drop=config.post_mlp_drop, drop_path=dpr[i],
|
| 43 |
+
norm_layer=norm_layer, layer_norm_first=config.layer_norm_first,
|
| 44 |
+
ffn_targets=True)
|
| 45 |
+
for i in range(config.depth)
|
| 46 |
+
])
|
| 47 |
+
|
| 48 |
+
self.pre_norm = norm_layer(config.embed_dim)
|
| 49 |
+
|
| 50 |
+
# === Head (for finetune) ===
|
| 51 |
+
if self.mode == "finetune":
|
| 52 |
+
self.fc_norm = nn.LayerNorm(config.embed_dim)
|
| 53 |
+
self.head = nn.Linear(config.embed_dim, config.num_classes, bias=True)
|
| 54 |
+
else:
|
| 55 |
+
self.head = nn.Identity()
|
| 56 |
+
|
| 57 |
+
self.apply(self._init_weights)
|
| 58 |
+
|
| 59 |
+
def build_sincos_pos_embed(self):
|
| 60 |
+
W = self.config.mel_bins // self.config.patch_size
|
| 61 |
+
max_length = self.config.max_length
|
| 62 |
+
embed_dim = self.config.embed_dim
|
| 63 |
+
pos_embed = nn.Parameter(torch.zeros(1, max_length * W, embed_dim), requires_grad=False)
|
| 64 |
+
emb = get_2d_sincos_pos_embed_flexible(embed_dim, (max_length, W), cls_token=False)
|
| 65 |
+
pos_embed.data.copy_(torch.from_numpy(emb).float().unsqueeze(0))
|
| 66 |
+
return pos_embed
|
| 67 |
+
|
| 68 |
+
def _init_weights(self, m):
|
| 69 |
+
if isinstance(m, nn.Linear):
|
| 70 |
+
trunc_normal_(m.weight, std=.02)
|
| 71 |
+
if m.bias is not None:
|
| 72 |
+
nn.init.constant_(m.bias, 0)
|
| 73 |
+
elif isinstance(m, nn.LayerNorm):
|
| 74 |
+
nn.init.constant_(m.bias, 0)
|
| 75 |
+
nn.init.constant_(m.weight, 1.0)
|
| 76 |
+
|
| 77 |
+
def encode(self, x):
|
| 78 |
+
B = x.shape[0]
|
| 79 |
+
x = self.local_encoder(x)
|
| 80 |
+
if self.fixed_positional_encoder is not None:
|
| 81 |
+
x = x + self.fixed_positional_encoder(x, None)[:, :x.size(1), :]
|
| 82 |
+
x = torch.cat((self.extra_tokens.expand(B, -1, -1), x), dim=1)
|
| 83 |
+
x = self.pre_norm(x)
|
| 84 |
+
x = self.pos_drop(x)
|
| 85 |
+
for blk in self.blocks:
|
| 86 |
+
x, _ = blk(x)
|
| 87 |
+
return x
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
x = self.encode(x)
|
| 91 |
+
if self.mode == "finetune":
|
| 92 |
+
x = x[:, 0] # use cls token
|
| 93 |
+
x = self.fc_norm(x)
|
| 94 |
+
x = self.head(x)
|
| 95 |
+
return x
|
| 96 |
+
|
| 97 |
+
def extract_features(self, x):
|
| 98 |
+
x = self.encode(x)
|
| 99 |
+
return x
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8623072d09aac4f3ad1168b4fed3a24e4f68fe1da25b9fe733375efb237e5f48
|
| 3 |
+
size 359905840
|
model_core.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
from timm.models.layers import to_2tuple
|
| 6 |
+
|
| 7 |
+
class PatchEmbed_new(nn.Module):
|
| 8 |
+
""" Flexible Image to Patch Embedding
|
| 9 |
+
"""
|
| 10 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, stride=16):
|
| 11 |
+
super().__init__()
|
| 12 |
+
img_size = to_2tuple(img_size)
|
| 13 |
+
patch_size = to_2tuple(patch_size)
|
| 14 |
+
stride = to_2tuple(stride)
|
| 15 |
+
|
| 16 |
+
self.img_size = img_size
|
| 17 |
+
self.patch_size = patch_size
|
| 18 |
+
|
| 19 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride) # with overlapped patches
|
| 20 |
+
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
x = self.proj(x)
|
| 23 |
+
x = x.flatten(2).transpose(1, 2)
|
| 24 |
+
return x
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_2d_sincos_pos_embed_flexible(embed_dim, grid_size, cls_token=False):
|
| 28 |
+
"""
|
| 29 |
+
grid_size: int of the grid height and width
|
| 30 |
+
return:
|
| 31 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
| 32 |
+
"""
|
| 33 |
+
grid_h = np.arange(grid_size[0], dtype=np.float32)
|
| 34 |
+
grid_w = np.arange(grid_size[1], dtype=np.float32)
|
| 35 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 36 |
+
grid = np.stack(grid, axis=0)
|
| 37 |
+
|
| 38 |
+
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
|
| 39 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 40 |
+
if cls_token:
|
| 41 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
| 42 |
+
return pos_embed
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 46 |
+
assert embed_dim % 2 == 0
|
| 47 |
+
|
| 48 |
+
# use half of dimensions to encode grid_h
|
| 49 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 50 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 51 |
+
|
| 52 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 53 |
+
return emb
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 57 |
+
"""
|
| 58 |
+
embed_dim: output dimension for each position
|
| 59 |
+
pos: a list of positions to be encoded: size (M,)
|
| 60 |
+
out: (M, D)
|
| 61 |
+
"""
|
| 62 |
+
assert embed_dim % 2 == 0
|
| 63 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
| 64 |
+
omega /= embed_dim / 2.0
|
| 65 |
+
omega = 1.0 / 10000 ** omega # (D/2,)
|
| 66 |
+
|
| 67 |
+
pos = pos.reshape(-1) # (M,)
|
| 68 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
| 69 |
+
|
| 70 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 71 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 72 |
+
|
| 73 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 74 |
+
return emb
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class FixedPositionalEncoder(nn.Module):
|
| 78 |
+
def __init__(self, pos_embed):
|
| 79 |
+
super().__init__()
|
| 80 |
+
self.positions = pos_embed
|
| 81 |
+
|
| 82 |
+
def forward(self, x, padding_mask):
|
| 83 |
+
return self.positions
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class AltBlock(nn.Module):
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
dim,
|
| 90 |
+
num_heads,
|
| 91 |
+
mlp_ratio=4.0,
|
| 92 |
+
qkv_bias=False,
|
| 93 |
+
qk_scale=None,
|
| 94 |
+
drop=0.0,
|
| 95 |
+
attn_drop=0.0,
|
| 96 |
+
mlp_drop=0.0,
|
| 97 |
+
post_mlp_drop=0.0,
|
| 98 |
+
drop_path=0.0,
|
| 99 |
+
act_layer=nn.GELU,
|
| 100 |
+
norm_layer=nn.LayerNorm,
|
| 101 |
+
layer_norm_first=True,
|
| 102 |
+
ffn_targets=False,
|
| 103 |
+
cosine_attention=False,
|
| 104 |
+
):
|
| 105 |
+
super().__init__()
|
| 106 |
+
|
| 107 |
+
self.layer_norm_first = layer_norm_first
|
| 108 |
+
self.ffn_targets = ffn_targets
|
| 109 |
+
|
| 110 |
+
from timm.models.vision_transformer import DropPath, Mlp
|
| 111 |
+
|
| 112 |
+
self.norm1 = norm_layer(dim)
|
| 113 |
+
self.attn = AltAttention(
|
| 114 |
+
dim,
|
| 115 |
+
num_heads=num_heads,
|
| 116 |
+
qkv_bias=qkv_bias,
|
| 117 |
+
qk_scale=qk_scale,
|
| 118 |
+
attn_drop=attn_drop,
|
| 119 |
+
proj_drop=drop,
|
| 120 |
+
cosine_attention=cosine_attention,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 124 |
+
self.norm2 = norm_layer(dim)
|
| 125 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 126 |
+
self.mlp = Mlp(
|
| 127 |
+
in_features=dim,
|
| 128 |
+
hidden_features=mlp_hidden_dim,
|
| 129 |
+
act_layer=act_layer,
|
| 130 |
+
drop=mlp_drop,
|
| 131 |
+
)
|
| 132 |
+
self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False)
|
| 133 |
+
|
| 134 |
+
def forward(self, x, padding_mask=None, alibi_bias=None):
|
| 135 |
+
if self.layer_norm_first:
|
| 136 |
+
x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias))
|
| 137 |
+
r = x = self.mlp(self.norm2(x))
|
| 138 |
+
t = x
|
| 139 |
+
x = r + self.drop_path(self.post_mlp_dropout(x))
|
| 140 |
+
if not self.ffn_targets:
|
| 141 |
+
t = x
|
| 142 |
+
else:
|
| 143 |
+
x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias))
|
| 144 |
+
r = x = self.norm1(x)
|
| 145 |
+
x = self.mlp(x)
|
| 146 |
+
t = x
|
| 147 |
+
x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x)))
|
| 148 |
+
if not self.ffn_targets:
|
| 149 |
+
t = x
|
| 150 |
+
|
| 151 |
+
return x, t
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class AltAttention(nn.Module):
|
| 155 |
+
def __init__(
|
| 156 |
+
self,
|
| 157 |
+
dim,
|
| 158 |
+
num_heads=8,
|
| 159 |
+
qkv_bias=False,
|
| 160 |
+
qk_scale=None,
|
| 161 |
+
attn_drop=0.0,
|
| 162 |
+
proj_drop=0.0,
|
| 163 |
+
cosine_attention=False,
|
| 164 |
+
):
|
| 165 |
+
super().__init__()
|
| 166 |
+
self.num_heads = num_heads
|
| 167 |
+
head_dim = dim // num_heads
|
| 168 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 169 |
+
|
| 170 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 171 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 172 |
+
self.proj = nn.Linear(dim, dim)
|
| 173 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 174 |
+
|
| 175 |
+
self.cosine_attention = cosine_attention
|
| 176 |
+
|
| 177 |
+
if cosine_attention:
|
| 178 |
+
self.logit_scale = nn.Parameter(
|
| 179 |
+
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
def forward(self, x, padding_mask=None, alibi_bias=None):
|
| 183 |
+
B, N, C = x.shape
|
| 184 |
+
qkv = (
|
| 185 |
+
self.qkv(x)
|
| 186 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 187 |
+
.permute(2, 0, 3, 1, 4) # qkv x B x H x L x D
|
| 188 |
+
)
|
| 189 |
+
q, k, v = (
|
| 190 |
+
qkv[0],
|
| 191 |
+
qkv[1],
|
| 192 |
+
qkv[2],
|
| 193 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
| 194 |
+
|
| 195 |
+
dtype = q.dtype
|
| 196 |
+
|
| 197 |
+
if self.cosine_attention:
|
| 198 |
+
# cosine attention
|
| 199 |
+
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
|
| 200 |
+
logit_scale = torch.clamp(
|
| 201 |
+
self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01))
|
| 202 |
+
).exp()
|
| 203 |
+
attn = attn * logit_scale
|
| 204 |
+
else:
|
| 205 |
+
q = q * self.scale
|
| 206 |
+
attn = q @ k.transpose(-2, -1)
|
| 207 |
+
|
| 208 |
+
if alibi_bias is not None:
|
| 209 |
+
attn = attn.type_as(alibi_bias)
|
| 210 |
+
attn[:, : alibi_bias.size(1)] += alibi_bias
|
| 211 |
+
|
| 212 |
+
if padding_mask is not None and padding_mask.any():
|
| 213 |
+
attn = attn.masked_fill(
|
| 214 |
+
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
| 215 |
+
float("-inf"),
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype)
|
| 219 |
+
attn = self.attn_drop(attn)
|
| 220 |
+
x = (attn @ v).transpose(1, 2) #
|
| 221 |
+
x = x.reshape(B, N, C)
|
| 222 |
+
x = self.proj(x)
|
| 223 |
+
x = self.proj_drop(x)
|
| 224 |
+
return x
|
modeling_eat.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modeling_eat.py
|
| 2 |
+
|
| 3 |
+
from transformers import PreTrainedModel
|
| 4 |
+
from configuration_eat import EATConfig
|
| 5 |
+
from eat_model import EAT
|
| 6 |
+
|
| 7 |
+
class EATModel(PreTrainedModel):
|
| 8 |
+
config_class = EATConfig
|
| 9 |
+
|
| 10 |
+
def __init__(self, config: EATConfig):
|
| 11 |
+
super().__init__(config)
|
| 12 |
+
self.model = EAT(config)
|
| 13 |
+
|
| 14 |
+
def forward(self, *args, **kwargs):
|
| 15 |
+
return self.model(*args, **kwargs)
|
| 16 |
+
|
| 17 |
+
def extract_features(self, x):
|
| 18 |
+
return self.model.extract_features(x)
|