SentenceTransformer based on x2bee/KoModernBERT-base-mlm_v02
This is a sentence-transformers model finetuned from x2bee/KoModernBERT-base-mlm_v02 on the korean_nli_dataset dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: x2bee/KoModernBERT-base-mlm_v02
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("x2bee/KoModernBERT_SBERT_compare_mlmlv5")
# Run inference
sentences = [
'한 여자와 소년이 경찰 오토바이에 앉아 있다.',
'여자와 소년이 밖에 있다.',
'한 남자가 물 위에 밧줄을 매고 있다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts_dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.6374 |
| spearman_cosine | 0.6328 |
| pearson_euclidean | 0.6327 |
| spearman_euclidean | 0.6122 |
| pearson_manhattan | 0.6346 |
| spearman_manhattan | 0.6154 |
| pearson_dot | 0.5941 |
| spearman_dot | 0.5742 |
| pearson_max | 0.6374 |
| spearman_max | 0.6328 |
Training Details
Training Dataset
korean_nli_dataset
- Dataset: korean_nli_dataset at 51cc968
- Size: 550,152 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 21.76 tokens
- max: 76 tokens
- min: 4 tokens
- mean: 14.36 tokens
- max: 44 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence1 sentence2 score 몸에 맞지 않는 노란색 셔츠와 파란색 플래드 스커트를 입은 나이든 여성이 두 개의 통 옆에 앉아 있다.여자가 역기를 들어올리고 있다.0.0갈색 코트를 입은 선글라스를 쓴 한 남성이 담배를 피우며 손님들이 길거리 스탠드에서 물건을 구입하자 코를 긁는다.갈색 코트를 입은 선글라스를 쓴 청년이 담배를 피우며 손님들이 스테이트 스탠드에서 구매하고 있을 때 코를 긁는다.0.5소녀들은 물을 뿌리며 놀면서 킥킥 웃는다.수도 본관이 고장나서 큰길이 범람했다.0.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
korean_nli_dataset
- Dataset: korean_nli_dataset at 51cc968
- Size: 550,152 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 21.88 tokens
- max: 76 tokens
- min: 5 tokens
- mean: 14.14 tokens
- max: 38 tokens
- min: 0.0
- mean: 0.52
- max: 1.0
- Samples:
sentence1 sentence2 score 한 역사학자와 그의 친구는 연구를 위해 더 많은 화석을 찾기 위해 광산을 파고 있다.역사가는 공부를 위해 친구와 함께 땅을 파고 있다.0.5소년은 회전목마에 도움을 받는다.소년이 당나귀를 타고 있다.0.0세탁실에서 사색적인 포즈를 취하고 있는 남자.한 남자가 파티오 밖에 있다.0.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 32gradient_accumulation_steps: 2learning_rate: 1e-05num_train_epochs: 2warmup_ratio: 0.3push_to_hub: Truehub_model_id: x2bee/KoModernBERT_SBERT_compare_mlmlv5batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.3warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: x2bee/KoModernBERT_SBERT_compare_mlmlv5hub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
|---|---|---|---|---|
| 0 | 0 | - | - | 0.3994 |
| 0.0980 | 100 | 0.3216 | - | - |
| 0.1960 | 200 | 0.2019 | - | - |
| 0.2940 | 300 | 0.1451 | - | - |
| 0.3920 | 400 | 0.1327 | - | - |
| 0.4900 | 500 | 0.1231 | - | - |
| 0.5879 | 600 | 0.1138 | - | - |
| 0.6859 | 700 | 0.1091 | - | - |
| 0.7839 | 800 | 0.106 | - | - |
| 0.8819 | 900 | 0.1047 | - | - |
| 0.9799 | 1000 | 0.1029 | - | - |
| 1.0 | 1021 | - | 0.1003 | 0.6352 |
| 1.0774 | 1100 | 0.0999 | - | - |
| 1.1754 | 1200 | 0.0994 | - | - |
| 1.2734 | 1300 | 0.0989 | - | - |
| 1.3714 | 1400 | 0.0974 | - | - |
| 1.4694 | 1500 | 0.0975 | - | - |
| 1.5674 | 1600 | 0.0945 | - | - |
| 1.6654 | 1700 | 0.0933 | - | - |
| 1.7634 | 1800 | 0.0922 | - | - |
| 1.8613 | 1900 | 0.0928 | - | - |
| 1.9593 | 2000 | 0.0928 | - | - |
| 1.9985 | 2040 | - | 0.0955 | 0.6328 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
Model tree for x2bee/KoModernBERT_SBERT_compare_mlmlv5
Base model
answerdotai/ModernBERT-base
Finetuned
x2bee/KoModernBERT-base-mlm_v02
Evaluation results
- Pearson Cosine on sts devself-reported0.637
- Spearman Cosine on sts devself-reported0.633
- Pearson Euclidean on sts devself-reported0.633
- Spearman Euclidean on sts devself-reported0.612
- Pearson Manhattan on sts devself-reported0.635
- Spearman Manhattan on sts devself-reported0.615
- Pearson Dot on sts devself-reported0.594
- Spearman Dot on sts devself-reported0.574
- Pearson Max on sts devself-reported0.637
- Spearman Max on sts devself-reported0.633