Upload modeling_codegen.py
Browse files- modeling_codegen.py +686 -0
modeling_codegen.py
ADDED
|
@@ -0,0 +1,686 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Modified forward-pass implementation based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/gptj/modeling_gptj.py
|
| 17 |
+
|
| 18 |
+
from typing import Tuple
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
import torch.utils.checkpoint
|
| 24 |
+
from torch import nn
|
| 25 |
+
from torch.nn import CrossEntropyLoss
|
| 26 |
+
|
| 27 |
+
from transformers.activations import ACT2FN
|
| 28 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 29 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 30 |
+
from transformers.utils import logging
|
| 31 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 32 |
+
from .configuration_codegen import CodeGenConfig
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
logger = logging.get_logger(__name__)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
|
| 39 |
+
dim = x.shape[-1]
|
| 40 |
+
if seq_len is None:
|
| 41 |
+
seq_len = x.shape[seq_dim]
|
| 42 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
| 43 |
+
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq).to(x.device).float()
|
| 44 |
+
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def rotate_every_two(x):
|
| 48 |
+
x1 = x[:, :, :, ::2]
|
| 49 |
+
x2 = x[:, :, :, 1::2]
|
| 50 |
+
x = torch.stack((-x2, x1), axis=-1)
|
| 51 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def apply_rotary_pos_emb(x, sincos, offset=0):
|
| 55 |
+
sin, cos = map(lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(2, 3), sincos)
|
| 56 |
+
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
|
| 57 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class CodeGenAttention(nn.Module):
|
| 61 |
+
def __init__(self, config):
|
| 62 |
+
super().__init__()
|
| 63 |
+
|
| 64 |
+
max_positions = config.max_position_embeddings
|
| 65 |
+
self.register_buffer(
|
| 66 |
+
"bias",
|
| 67 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
| 68 |
+
1, 1, max_positions, max_positions
|
| 69 |
+
),
|
| 70 |
+
)
|
| 71 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9))
|
| 72 |
+
|
| 73 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
| 74 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 75 |
+
|
| 76 |
+
self.embed_dim = config.hidden_size
|
| 77 |
+
self.num_attention_heads = config.num_attention_heads
|
| 78 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
| 79 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
| 80 |
+
raise ValueError(
|
| 81 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and `num_attention_heads`: {self.num_attention_heads})."
|
| 82 |
+
)
|
| 83 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
| 84 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
|
| 85 |
+
|
| 86 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
| 87 |
+
self.rotary_dim = None
|
| 88 |
+
if config.rotary_dim is not None:
|
| 89 |
+
self.rotary_dim = config.rotary_dim
|
| 90 |
+
|
| 91 |
+
def _split_heads(self, x, n_head, dim_head, mp_num):
|
| 92 |
+
reshaped = x.reshape(x.shape[:-1] + (n_head//mp_num, dim_head))
|
| 93 |
+
reshaped = reshaped.reshape(x.shape[:-2] + (-1, ) + reshaped.shape[-1:])
|
| 94 |
+
return reshaped
|
| 95 |
+
|
| 96 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
| 97 |
+
"""
|
| 98 |
+
Merges attn_head_size dim and num_attn_heads dim into n_ctx
|
| 99 |
+
"""
|
| 100 |
+
if len(tensor.shape) == 5:
|
| 101 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
| 102 |
+
elif len(tensor.shape) == 4:
|
| 103 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
| 104 |
+
else:
|
| 105 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
| 106 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
| 107 |
+
return tensor.view(new_shape)
|
| 108 |
+
|
| 109 |
+
def _attn(
|
| 110 |
+
self,
|
| 111 |
+
query,
|
| 112 |
+
key,
|
| 113 |
+
value,
|
| 114 |
+
attention_mask=None,
|
| 115 |
+
head_mask=None,
|
| 116 |
+
):
|
| 117 |
+
|
| 118 |
+
# compute causal mask from causal mask buffer
|
| 119 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 120 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
| 121 |
+
|
| 122 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
| 123 |
+
query = query.to(torch.float32)
|
| 124 |
+
key = key.to(torch.float32)
|
| 125 |
+
|
| 126 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 127 |
+
|
| 128 |
+
attn_weights = attn_weights / self.scale_attn
|
| 129 |
+
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
|
| 130 |
+
|
| 131 |
+
if attention_mask is not None:
|
| 132 |
+
# Apply the attention mask
|
| 133 |
+
attn_weights = attn_weights + attention_mask
|
| 134 |
+
|
| 135 |
+
attn_weights = nn.Softmax(dim=-1)(attn_weights)
|
| 136 |
+
attn_weights = attn_weights.to(value.dtype)
|
| 137 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 138 |
+
|
| 139 |
+
# Mask heads if we want to
|
| 140 |
+
if head_mask is not None:
|
| 141 |
+
attn_weights = attn_weights * head_mask
|
| 142 |
+
|
| 143 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 144 |
+
|
| 145 |
+
return attn_output, attn_weights
|
| 146 |
+
|
| 147 |
+
def forward(
|
| 148 |
+
self,
|
| 149 |
+
hidden_states,
|
| 150 |
+
attention_mask=None,
|
| 151 |
+
layer_past=None,
|
| 152 |
+
head_mask=None,
|
| 153 |
+
use_cache=False,
|
| 154 |
+
output_attentions=False,
|
| 155 |
+
):
|
| 156 |
+
|
| 157 |
+
qkv = self.qkv_proj(hidden_states)
|
| 158 |
+
# TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic
|
| 159 |
+
mp_num = 4
|
| 160 |
+
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
|
| 161 |
+
|
| 162 |
+
local_dim = self.head_dim * self.num_attention_heads // mp_num
|
| 163 |
+
query, value, key = torch.split(qkv_split, local_dim, dim=-1)
|
| 164 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
| 165 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
| 166 |
+
|
| 167 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
| 168 |
+
value = value.permute(0, 2, 1, 3)
|
| 169 |
+
|
| 170 |
+
seq_len = key.shape[1]
|
| 171 |
+
offset = 0
|
| 172 |
+
|
| 173 |
+
if layer_past is not None:
|
| 174 |
+
offset = layer_past[0].shape[-2]
|
| 175 |
+
seq_len += offset
|
| 176 |
+
|
| 177 |
+
if self.rotary_dim is not None:
|
| 178 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
| 179 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
| 180 |
+
|
| 181 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
| 182 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
| 183 |
+
|
| 184 |
+
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
|
| 185 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
|
| 186 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
|
| 187 |
+
|
| 188 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
| 189 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
| 190 |
+
else:
|
| 191 |
+
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
|
| 192 |
+
key = apply_rotary_pos_emb(key, sincos, offset=offset)
|
| 193 |
+
query = apply_rotary_pos_emb(query, sincos, offset=offset)
|
| 194 |
+
|
| 195 |
+
key = key.permute(0, 2, 1, 3)
|
| 196 |
+
query = query.permute(0, 2, 1, 3)
|
| 197 |
+
|
| 198 |
+
if layer_past is not None:
|
| 199 |
+
past_key = layer_past[0]
|
| 200 |
+
past_value = layer_past[1]
|
| 201 |
+
key = torch.cat((past_key, key), dim=-2)
|
| 202 |
+
value = torch.cat((past_value, value), dim=-2)
|
| 203 |
+
|
| 204 |
+
if use_cache is True:
|
| 205 |
+
present = (key, value)
|
| 206 |
+
else:
|
| 207 |
+
present = None
|
| 208 |
+
|
| 209 |
+
# compute self-attention: V x Softmax(QK^T)
|
| 210 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
| 211 |
+
|
| 212 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
| 213 |
+
|
| 214 |
+
attn_output = self.out_proj(attn_output)
|
| 215 |
+
attn_output = self.resid_dropout(attn_output)
|
| 216 |
+
|
| 217 |
+
outputs = (attn_output, present)
|
| 218 |
+
if output_attentions:
|
| 219 |
+
outputs += (attn_weights,)
|
| 220 |
+
|
| 221 |
+
return outputs # a, present, (attentions)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class CodeGenMLP(nn.Module):
|
| 225 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
| 226 |
+
super().__init__()
|
| 227 |
+
embed_dim = config.n_embd
|
| 228 |
+
|
| 229 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
| 230 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
| 231 |
+
|
| 232 |
+
self.act = ACT2FN[config.activation_function]
|
| 233 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
| 234 |
+
|
| 235 |
+
def forward(self, hidden_states):
|
| 236 |
+
hidden_states = self.fc_in(hidden_states)
|
| 237 |
+
hidden_states = self.act(hidden_states)
|
| 238 |
+
hidden_states = self.fc_out(hidden_states)
|
| 239 |
+
hidden_states = self.dropout(hidden_states)
|
| 240 |
+
return hidden_states
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
class CodeGenBlock(nn.Module):
|
| 244 |
+
def __init__(self, config):
|
| 245 |
+
super().__init__()
|
| 246 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
| 247 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 248 |
+
self.attn = CodeGenAttention(config)
|
| 249 |
+
self.mlp = CodeGenMLP(inner_dim, config)
|
| 250 |
+
|
| 251 |
+
def forward(
|
| 252 |
+
self,
|
| 253 |
+
hidden_states,
|
| 254 |
+
layer_past=None,
|
| 255 |
+
attention_mask=None,
|
| 256 |
+
head_mask=None,
|
| 257 |
+
use_cache=False,
|
| 258 |
+
output_attentions=False,
|
| 259 |
+
):
|
| 260 |
+
residual = hidden_states
|
| 261 |
+
hidden_states = self.ln_1(hidden_states)
|
| 262 |
+
attn_outputs = self.attn(
|
| 263 |
+
hidden_states,
|
| 264 |
+
layer_past=layer_past,
|
| 265 |
+
attention_mask=attention_mask,
|
| 266 |
+
head_mask=head_mask,
|
| 267 |
+
use_cache=use_cache,
|
| 268 |
+
output_attentions=output_attentions,
|
| 269 |
+
)
|
| 270 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
| 271 |
+
outputs = attn_outputs[1:]
|
| 272 |
+
|
| 273 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
| 274 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
| 275 |
+
|
| 276 |
+
if use_cache:
|
| 277 |
+
outputs = (hidden_states,) + outputs
|
| 278 |
+
else:
|
| 279 |
+
outputs = (hidden_states,) + outputs[1:]
|
| 280 |
+
|
| 281 |
+
return outputs # hidden_states, present, (attentions)
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
class CodeGenPreTrainedModel(PreTrainedModel):
|
| 285 |
+
"""
|
| 286 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 287 |
+
models.
|
| 288 |
+
"""
|
| 289 |
+
|
| 290 |
+
config_class = CodeGenConfig
|
| 291 |
+
base_model_prefix = "transformer"
|
| 292 |
+
is_parallelizable = True
|
| 293 |
+
|
| 294 |
+
def __init__(self, *inputs, **kwargs):
|
| 295 |
+
super().__init__(*inputs, **kwargs)
|
| 296 |
+
|
| 297 |
+
def _init_weights(self, module):
|
| 298 |
+
"""Initialize the weights."""
|
| 299 |
+
if isinstance(module, (nn.Linear,)):
|
| 300 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
| 301 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 302 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 303 |
+
if module.bias is not None:
|
| 304 |
+
module.bias.data.zero_()
|
| 305 |
+
elif isinstance(module, nn.Embedding):
|
| 306 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 307 |
+
if module.padding_idx is not None:
|
| 308 |
+
module.weight.data[module.padding_idx].zero_()
|
| 309 |
+
elif isinstance(module, nn.LayerNorm):
|
| 310 |
+
module.bias.data.zero_()
|
| 311 |
+
module.weight.data.fill_(1.0)
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
class CodeGenModel(CodeGenPreTrainedModel):
|
| 315 |
+
def __init__(self, config):
|
| 316 |
+
super().__init__(config)
|
| 317 |
+
|
| 318 |
+
self.embed_dim = config.n_embd
|
| 319 |
+
self.vocab_size = config.vocab_size
|
| 320 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 321 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 322 |
+
self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)])
|
| 323 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 324 |
+
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)
|
| 325 |
+
self.init_weights()
|
| 326 |
+
|
| 327 |
+
# Model parallel
|
| 328 |
+
self.model_parallel = False
|
| 329 |
+
self.device_map = None
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def parallelize(self, device_map=None):
|
| 333 |
+
# Check validity of device_map
|
| 334 |
+
self.device_map = (
|
| 335 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
| 336 |
+
)
|
| 337 |
+
assert_device_map(self.device_map, len(self.h))
|
| 338 |
+
self.model_parallel = True
|
| 339 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
| 340 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
| 341 |
+
self.wte = self.wte.to(self.first_device)
|
| 342 |
+
# Load onto devices
|
| 343 |
+
for k, v in self.device_map.items():
|
| 344 |
+
for block in v:
|
| 345 |
+
cuda_device = "cuda:" + str(k)
|
| 346 |
+
self.h[block] = self.h[block].to(cuda_device)
|
| 347 |
+
# ln_f to last
|
| 348 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def deparallelize(self):
|
| 352 |
+
self.model_parallel = False
|
| 353 |
+
self.device_map = None
|
| 354 |
+
self.first_device = "cpu"
|
| 355 |
+
self.last_device = "cpu"
|
| 356 |
+
self.wte = self.wte.to("cpu")
|
| 357 |
+
for index in range(len(self.h)):
|
| 358 |
+
self.h[index] = self.h[index].to("cpu")
|
| 359 |
+
self.ln_f = self.ln_f.to("cpu")
|
| 360 |
+
torch.cuda.empty_cache()
|
| 361 |
+
|
| 362 |
+
def get_input_embeddings(self):
|
| 363 |
+
return self.wte
|
| 364 |
+
|
| 365 |
+
def set_input_embeddings(self, new_embeddings):
|
| 366 |
+
self.wte = new_embeddings
|
| 367 |
+
|
| 368 |
+
def forward(
|
| 369 |
+
self,
|
| 370 |
+
input_ids=None,
|
| 371 |
+
past_key_values=None,
|
| 372 |
+
attention_mask=None,
|
| 373 |
+
token_type_ids=None,
|
| 374 |
+
position_ids=None,
|
| 375 |
+
head_mask=None,
|
| 376 |
+
inputs_embeds=None,
|
| 377 |
+
use_cache=None,
|
| 378 |
+
output_attentions=None,
|
| 379 |
+
output_hidden_states=None,
|
| 380 |
+
return_dict=None,
|
| 381 |
+
):
|
| 382 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 383 |
+
output_hidden_states = (
|
| 384 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 385 |
+
)
|
| 386 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 387 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 388 |
+
|
| 389 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 390 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 391 |
+
elif input_ids is not None:
|
| 392 |
+
input_shape = input_ids.size()
|
| 393 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 394 |
+
batch_size = input_ids.shape[0]
|
| 395 |
+
elif inputs_embeds is not None:
|
| 396 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 397 |
+
batch_size = inputs_embeds.shape[0]
|
| 398 |
+
else:
|
| 399 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 400 |
+
|
| 401 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 402 |
+
|
| 403 |
+
if token_type_ids is not None:
|
| 404 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 405 |
+
|
| 406 |
+
if position_ids is not None:
|
| 407 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
| 408 |
+
|
| 409 |
+
if past_key_values is None:
|
| 410 |
+
past_length = 0
|
| 411 |
+
past_key_values = tuple([None] * len(self.h))
|
| 412 |
+
else:
|
| 413 |
+
past_length = past_key_values[0][0].size(-2)
|
| 414 |
+
|
| 415 |
+
if position_ids is None:
|
| 416 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
| 417 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
| 418 |
+
|
| 419 |
+
# Attention mask.
|
| 420 |
+
if attention_mask is not None:
|
| 421 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
| 422 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
| 423 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
| 424 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
| 425 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
| 426 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
| 427 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
| 428 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 429 |
+
|
| 430 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 431 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 432 |
+
# positions we want to attend and -10000.0 for masked positions.
|
| 433 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 434 |
+
# effectively the same as removing these entirely.
|
| 435 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 436 |
+
attention_mask = (1.0 - attention_mask) * -10000.0
|
| 437 |
+
|
| 438 |
+
# Prepare head mask if needed
|
| 439 |
+
# 1.0 in head_mask indicate we keep the head
|
| 440 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
| 441 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
| 442 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
| 443 |
+
|
| 444 |
+
if inputs_embeds is None:
|
| 445 |
+
inputs_embeds = self.wte(input_ids)
|
| 446 |
+
|
| 447 |
+
hidden_states = inputs_embeds
|
| 448 |
+
|
| 449 |
+
if token_type_ids is not None:
|
| 450 |
+
token_type_embeds = self.wte(token_type_ids)
|
| 451 |
+
hidden_states = hidden_states + token_type_embeds
|
| 452 |
+
|
| 453 |
+
hidden_states = self.drop(hidden_states)
|
| 454 |
+
|
| 455 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
| 456 |
+
|
| 457 |
+
presents = () if use_cache else None
|
| 458 |
+
all_self_attentions = () if output_attentions else None
|
| 459 |
+
all_hidden_states = () if output_hidden_states else None
|
| 460 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 461 |
+
|
| 462 |
+
# Model parallel
|
| 463 |
+
if self.model_parallel:
|
| 464 |
+
torch.cuda.set_device(hidden_states.device)
|
| 465 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
| 466 |
+
if layer_past is not None:
|
| 467 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
| 468 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
| 469 |
+
if attention_mask is not None:
|
| 470 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 471 |
+
if isinstance(head_mask, torch.Tensor):
|
| 472 |
+
head_mask = head_mask.to(hidden_states.device)
|
| 473 |
+
if output_hidden_states:
|
| 474 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 475 |
+
|
| 476 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
| 477 |
+
|
| 478 |
+
if use_cache:
|
| 479 |
+
logger.warning(
|
| 480 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
| 481 |
+
"`use_cache=False`..."
|
| 482 |
+
)
|
| 483 |
+
use_cache = False
|
| 484 |
+
|
| 485 |
+
def create_custom_forward(module):
|
| 486 |
+
def custom_forward(*inputs):
|
| 487 |
+
# None for past_key_value
|
| 488 |
+
return module(*inputs, use_cache, output_attentions)
|
| 489 |
+
|
| 490 |
+
return custom_forward
|
| 491 |
+
|
| 492 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
| 493 |
+
create_custom_forward(block),
|
| 494 |
+
hidden_states,
|
| 495 |
+
None,
|
| 496 |
+
attention_mask,
|
| 497 |
+
head_mask[i],
|
| 498 |
+
)
|
| 499 |
+
else:
|
| 500 |
+
outputs = block(
|
| 501 |
+
hidden_states,
|
| 502 |
+
layer_past=layer_past,
|
| 503 |
+
attention_mask=attention_mask,
|
| 504 |
+
head_mask=head_mask[i],
|
| 505 |
+
use_cache=use_cache,
|
| 506 |
+
output_attentions=output_attentions,
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
hidden_states = outputs[0]
|
| 510 |
+
if use_cache is True:
|
| 511 |
+
presents = presents + (outputs[1],)
|
| 512 |
+
|
| 513 |
+
if output_attentions:
|
| 514 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 515 |
+
|
| 516 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 517 |
+
if self.model_parallel:
|
| 518 |
+
for k, v in self.device_map.items():
|
| 519 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 520 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 521 |
+
|
| 522 |
+
hidden_states = self.ln_f(hidden_states)
|
| 523 |
+
|
| 524 |
+
hidden_states = hidden_states.view(*output_shape)
|
| 525 |
+
# Add last hidden state
|
| 526 |
+
if output_hidden_states:
|
| 527 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 528 |
+
|
| 529 |
+
if not return_dict:
|
| 530 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
| 531 |
+
|
| 532 |
+
return BaseModelOutputWithPast(
|
| 533 |
+
last_hidden_state=hidden_states,
|
| 534 |
+
past_key_values=presents,
|
| 535 |
+
hidden_states=all_hidden_states,
|
| 536 |
+
attentions=all_self_attentions,
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
class CodeGenForCausalLM(CodeGenPreTrainedModel):
|
| 541 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head\.weight"]
|
| 542 |
+
|
| 543 |
+
def __init__(self, config):
|
| 544 |
+
super().__init__(config)
|
| 545 |
+
self.transformer = CodeGenModel(config)
|
| 546 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
| 547 |
+
self.init_weights()
|
| 548 |
+
|
| 549 |
+
# Model parallel
|
| 550 |
+
self.model_parallel = False
|
| 551 |
+
self.device_map = None
|
| 552 |
+
|
| 553 |
+
def parallelize(self, device_map=None):
|
| 554 |
+
self.device_map = (
|
| 555 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
| 556 |
+
if device_map is None
|
| 557 |
+
else device_map
|
| 558 |
+
)
|
| 559 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
| 560 |
+
self.transformer.parallelize(self.device_map)
|
| 561 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
| 562 |
+
self.model_parallel = True
|
| 563 |
+
|
| 564 |
+
def deparallelize(self):
|
| 565 |
+
self.transformer.deparallelize()
|
| 566 |
+
self.transformer = self.transformer.to("cpu")
|
| 567 |
+
self.lm_head = self.lm_head.to("cpu")
|
| 568 |
+
self.model_parallel = False
|
| 569 |
+
torch.cuda.empty_cache()
|
| 570 |
+
|
| 571 |
+
def get_output_embeddings(self):
|
| 572 |
+
return None
|
| 573 |
+
|
| 574 |
+
def set_output_embeddings(self, new_embeddings):
|
| 575 |
+
return
|
| 576 |
+
|
| 577 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 578 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 579 |
+
# only last token for inputs_ids if past is defined in kwargs
|
| 580 |
+
if past:
|
| 581 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 582 |
+
if token_type_ids is not None:
|
| 583 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
| 584 |
+
|
| 585 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 586 |
+
position_ids = kwargs.get("position_ids", None)
|
| 587 |
+
|
| 588 |
+
if attention_mask is not None and position_ids is None:
|
| 589 |
+
# create position_ids on the fly for batch generation
|
| 590 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 591 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 592 |
+
if past:
|
| 593 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 594 |
+
else:
|
| 595 |
+
position_ids = None
|
| 596 |
+
return {
|
| 597 |
+
"input_ids": input_ids,
|
| 598 |
+
"past_key_values": past,
|
| 599 |
+
"use_cache": kwargs.get("use_cache"),
|
| 600 |
+
"position_ids": position_ids,
|
| 601 |
+
"attention_mask": attention_mask,
|
| 602 |
+
"token_type_ids": token_type_ids,
|
| 603 |
+
}
|
| 604 |
+
|
| 605 |
+
def forward(
|
| 606 |
+
self,
|
| 607 |
+
input_ids=None,
|
| 608 |
+
past_key_values=None,
|
| 609 |
+
attention_mask=None,
|
| 610 |
+
token_type_ids=None,
|
| 611 |
+
position_ids=None,
|
| 612 |
+
head_mask=None,
|
| 613 |
+
inputs_embeds=None,
|
| 614 |
+
labels=None,
|
| 615 |
+
use_cache=None,
|
| 616 |
+
output_attentions=None,
|
| 617 |
+
output_hidden_states=None,
|
| 618 |
+
return_dict=None,
|
| 619 |
+
):
|
| 620 |
+
r"""
|
| 621 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
| 622 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 623 |
+
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
| 624 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
| 625 |
+
"""
|
| 626 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 627 |
+
|
| 628 |
+
transformer_outputs = self.transformer(
|
| 629 |
+
input_ids,
|
| 630 |
+
past_key_values=past_key_values,
|
| 631 |
+
attention_mask=attention_mask,
|
| 632 |
+
token_type_ids=token_type_ids,
|
| 633 |
+
position_ids=position_ids,
|
| 634 |
+
head_mask=head_mask,
|
| 635 |
+
inputs_embeds=inputs_embeds,
|
| 636 |
+
use_cache=use_cache,
|
| 637 |
+
output_attentions=output_attentions,
|
| 638 |
+
output_hidden_states=output_hidden_states,
|
| 639 |
+
return_dict=return_dict,
|
| 640 |
+
)
|
| 641 |
+
hidden_states = transformer_outputs[0]
|
| 642 |
+
|
| 643 |
+
# Set device for model parallelism
|
| 644 |
+
if self.model_parallel:
|
| 645 |
+
torch.cuda.set_device(self.transformer.first_device)
|
| 646 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
| 647 |
+
|
| 648 |
+
# make sure sampling in fp16 works correctly and
|
| 649 |
+
# compute loss in fp32 to match with mesh-tf version
|
| 650 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
| 651 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
| 652 |
+
|
| 653 |
+
loss = None
|
| 654 |
+
if labels is not None:
|
| 655 |
+
# Shift so that tokens < n predict n
|
| 656 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 657 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 658 |
+
# Flatten the tokens
|
| 659 |
+
loss_fct = CrossEntropyLoss()
|
| 660 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 661 |
+
|
| 662 |
+
loss = loss.to(hidden_states.dtype)
|
| 663 |
+
|
| 664 |
+
if not return_dict:
|
| 665 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 666 |
+
return ((loss,) + output) if loss is not None else output
|
| 667 |
+
|
| 668 |
+
return CausalLMOutputWithPast(
|
| 669 |
+
loss=loss,
|
| 670 |
+
logits=lm_logits,
|
| 671 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 672 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 673 |
+
attentions=transformer_outputs.attentions,
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
@staticmethod
|
| 677 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
| 678 |
+
"""
|
| 679 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
| 680 |
+
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
|
| 681 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
| 682 |
+
"""
|
| 683 |
+
return tuple(
|
| 684 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
| 685 |
+
for layer_past in past
|
| 686 |
+
)
|